711 research outputs found

    Reversible stochastic pump currents in interacting nanoscale conductors

    Full text link
    I argue that the geometric phase, responsible for reversible pump currents in classical stochastic kinetics, can be observed experimentally with an electronic setup, similar to the ones reported recently in [Phys. Rev. Lett. 96,076605 (2006)] and [Nature Physics 3, 243 - 247 (2007)]

    Current and fluctuation in a two-state stochastic system under non-adiabatic periodic perturbation

    Full text link
    We calculate a current and its fluctuation in a two-state stochastic system under a periodic perturbation. The system could be interpreted as a channel on a cell surface or a single Michaelis-Menten catalyzing enzyme. It has been shown that the periodic perturbation induces so-called pump current, and the pump current and its fluctuation are calculated with the aid of the geometrical phase interpretation. We give a simple calculation recipe for the statistics of the current, especially in a non-adiabatic case. The calculation scheme is based on the non-adiabatic geometrical phase interpretation. Using the Floquet theory, the total current and its fluctuation are calculated, and it is revealed that the average of the current shows a stochastic-resonance-like behavior. In contrast, the fluctuation of the current does not show such behavior.Comment: 7 pages, 1 figur

    Pumping-Restriction Theorem for Stochastic Networks

    Full text link
    We formulate an exact result, which we refer to as the pumping restriction theorem (PRT). It imposes strong restrictions on the currents generated by periodic driving in a generic dissipative system with detailed balance. Our theorem unifies previously known results with the new ones and provides a universal nonperturbative approach to explore further restrictions on the stochastic pump effect in non-adiabatically driven systems.Comment: 4 pages, 5 figure

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    A three-dimensional parabolic equation model of sound propagation using higher-order operator splitting and Padé approximants

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 132 (2012): EL364-EL370, doi:10.1121/1.4754421.An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.This work was sponsored by the Office of Naval Research under Grant Nos. N00014-10-1-0040 and N00014-11-1-0701

    Rate theory for correlated processes: Double-jumps in adatom diffusion

    Get PDF
    We study the rate of activated motion over multiple barriers, in particular the correlated double-jump of an adatom diffusing on a missing-row reconstructed Platinum (110) surface. We develop a Transition Path Theory, showing that the activation energy is given by the minimum-energy trajectory which succeeds in the double-jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a sqrt{T} prefactor for the activated rate of double-jumps. Theory and numerical results agree

    Assessment of Dissolution Profile of Marketed Aceclofenac Formulations

    Get PDF
    Statistical comparison of dissolution profiles under a variety of conditions relating to formulation characteristics, lot-to-lot, and brand-to-brand variation attracts interest of pharmaceutical scientist. The objective of this work is to apply several profile comparison approaches to the dissolution data of five-marketed aceclofenac tablet formulations. Model-independent approaches including ANOVA-based procedures, ratio test procedure, and pair wise procedure. The ratio test includes percentage, area under the curve, mean dissolution time, while the pair wise procedure includes difference factor (f1), similarity factor (f2), and Rescigno index. In the model-dependent approach, zero order, first order, Hixson-Crowell, Higuchi, and Weibull models were applied to the utilization of fit factors. All the approaches were applicable and useful. ANOVA with multiple comparison tests was found to be sensitive and discriminating for comparing the profiles. Weibull parameters were more sensitive to the difference between two release kinetic data in terms of curve shape and level

    Monte Carlo study of Si(111) homoepitaxy

    Full text link
    An attempt is made to simulate the homoepitaxial growth of a Si(111) surface by the kinetic Monte Carlo method in which the standard Solid-on-Solid model and the planar model of the (7x7) surface reconstruction are used in combination. By taking account of surface reconstructions as well as atomic deposition and migrations, it is shown that the effect of a coorparative stacking transformation is necessary for a layer growth.Comment: 4 pages, 5 figures. For Fig.1 of this article, please see Fig.2 of Phys.Rev. B56, 3583 (1997). To appear in Phys.Rev.B. (June 1998

    Crossed Molecular Beam Study of the Reaction Br + O 3

    Full text link
    corecore