632 research outputs found

    Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-Dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo

    Full text link
    We propose the Galactic flare model for the origin of the X-ray gas in the Galactic halo. For this purpose, we examine the magnetic reconnection triggered by Parker instability (magnetic buoyancy instability), by performing the two-dimensional resistive numerical magnetohydrodynamic simulations. As a result of numerical simulations, the system evolves as following phases: Parker instability occurs in the Galactic disk. In the nonlinear phase of Parker instability, the magnetic loop inflates from the Galactic disk into the Galactic halo, and collides with the anti-parallel magnetic field, so that the current sheets are created in the Galactic halo. The tearing instability occurs, and creates the plasmoids (magnetic islands). Just after the plasmoid ejection, further current-sheet thinning occurs in the sheet, and the anomalous resistivity sets in. Petschek reconnection starts, and heats the gas quickly in the Galactic halo. It also creates the slow and fast shock regions in the Galactic halo. The magnetic field (B3μB\sim 3 \muG), for example, can heat the gas (n103n\sim 10^{-3} cm3^{-3}) to temperature of 106\sim 10^6 K via the reconnection in the Galactic halo. The gas is accelerated to Alfv\'en velocity (300\sim 300 km s1^{-1}). Such high velocity jets are the evidence of the Galactic flare model we present in this paper, if the Doppler shift of the bipolar jet is detected in the Galactic halo. Full size figures are available at http://www.kwasan.kyoto-u.ac.jp/~tanuma/study/ApJ2002/ApJ2002.htmlComment: 13 pages, 12 figures, uses emulateapj.sty, accepted by Ap

    Odd-frequency pairing in normal metal/superconductor junctions

    Get PDF
    We study the induced odd-frequency pairing states in ballistic normal metal/superconductor (N/S) junctions where a superconductor has even-frequency symmetry in the bulk and a normal metal layer has an arbitrary length. Using the quasiclassical Green's function formalism, we demonstrate that, quite generally, the pair amplitude in the junction has an admixture of an odd-frequency component due to the breakdown of translational invariance near the N/S interface where the pair potential acquires spatial dependence. If a superconductor has even-parity pair potential (spin-singlet s-wave state), the odd-frequency pairing component with odd-parity is induced near the N/S interface, while in the case of odd-parity pair potential (spin-triplet pxp_{x}-wave or spin-singlet dxyd_{xy}-wave) the odd-frequency component with even-parity is generated. We show that in conventional s-wave junctions, the amplitude of the odd-frequency pairing state is enhanced at energies corresponding to the peaks in the local density of states (LDOS). In pxp_x- and dxyd_{xy}-wave junctions, the amplitude of the odd-frequency component on the S side of the N/S interface is enhanced at zero energy where the midgap Andreev resonant state (MARS) appears due to the sign change of the pair potential. The odd-frequency component extends into the N region and exceeds the even-frequency component at energies corresponding to the LDOS peak positions, including the MARS.Comment: 27 pages, 12 figure

    Self-similar solution of fast magnetic reconnection: Semi-analytic study of inflow region

    Full text link
    An evolutionary process of the fast magnetic reconnection in ``free space'' which is free from any influence of outer circumstance has been studied semi-analytically, and a self-similarly expanding solution has been obtained. The semi-analytic solution is consistent with the results of our numerical simulations performed in our previous paper (see Nitta et al. 2001). This semi-analytic study confirms the existence of self-similar growth. On the other hand, the numerical study by time dependent computer simulation clarifies the stability of the self-similar growth with respect to any MHD mode. These results confirm the stable self-similar evolution of the fast magnetic reconnection system.Comment: 15 pages, 7 figure

    Zero-bias conductance peak splitting due to multiband effect in tunneling spectroscopy

    Full text link
    We study how the multiplicity of the Fermi surface affects the zero-bias peak in conductance spectra of tunneling spectroscopy. As case studies, we consider models for organic superconductors κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2 and (TMTSF)2_2ClO4_4. We find that multiplicity of the Fermi surfaces can lead to a splitting of the zero-bias conductance peak (ZBCP). We propose that the presence/absence of the ZBCP splitting is used as a probe to distinguish the pairing symmetry in κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 7 pages, 7 figure

    Temperature-dependence of spin-polarized transport in ferromagnet / unconventional superconductor junctions

    Full text link
    Tunneling conductance in ferromagnet / unconventional superconductor junctions is studied theoretically as a function of temperatures and spin-polarization in feromagnets. In d-wave superconductor junctions, the existence of a zero-energy Andreev bound state drastically affects the temperature-dependence of the zero-bias conductance (ZBC). In p-wave triplet superconductor junctions, numerical results show a wide variety in temperature-dependence of the ZBC depending on the direction of the magnetic moment in ferromagnets and the pairing symmetry in superconductors such as pxp_{x}, pyp_{y} and px+ipyp_{x}+ip_{y}-wave pair potential. The last one is a promising symmetry of Sr2_2RuO4_4. From these characteristic features in the conductance, we may obtain the information about the degree of spin-polarization in ferromagnets and the direction of the dd-vector in triplet superconductors

    Layer dependent band dispersion and correlations using tunable Soft X-ray ARPES

    Full text link
    Soft X-ray Angle-Resolved Photoemission Spectroscopy is applied to study in-plane band dispersions of Nickel as a function of probing depth. Photon energies between 190 and 780 eV were used to effectively probe up to 3-7 layers. The results show layer dependent band dispersion of the Delta_2 minority-spin band which crosses the Fermi level in 3 or more layers, in contrast to known top 1-2 layers dispersion obtained using ultra-violet rays. The layer dependence corresponds to an increased value of exchange splitting and suggests reduced correlation effects in the bulk compared to the surface.Comment: 7 pages, 3 figures Revised text and figur

    Electronic structures of CeRu2X2_2X_2 (XX = Si, Ge) in the paramagnetic phase studied by soft X-ray ARPES and hard X-ray photoelectron spectroscopy

    Full text link
    Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for one of the heavy fermion system CeRu2_2Si2_2 and a 4f4f-localized ferromagnet CeRu2_2Ge2_2 in the paramagnetic phase. The three-dimensional band structures and Fermi surface (FS) shapes of CeRu2_2Si2_2 have been determined by soft X-ray hνh\nu-dependent angle resolved photoelectron spectroscopy (ARPES). The differences in the Fermi surface topology and the non-4f4f electronic structures between CeRu2_2Si2_2 and CeRu2_2Ge2_2 are qualitatively explained by the band-structure calculation for both 4f4f itinerant and localized models, respectively. The Ce valences in CeRu2X2_2X_2 (XX = Si, Ge) at 20 K are quantitatively estimated by the single impurity Anderson model calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray absorption spectra have shown stronger hybridization and signature for the partial 4f4f contribution to the conduction electrons in CeRu2_2Si2_2.Comment: 8figure

    Fractional ac Josephson effect in unconventional superconductors

    Get PDF
    For certain orientations of Josephson junctions between two p_x-wave or two d-wave superconductors, the subgap Andreev bound states produce a 4pi-periodic relation between the Josephson current I and the phase difference phi: I ~ sin(phi/2). Consequently, the ac Josephson current has the fractional frequency eV/h, where V is the dc voltage. In the tunneling limit, the Josephson current is proportional to the first power (not square) of the electron tunneling amplitude. Thus, the Josephson current between unconventional superconductors is carried by single electrons, rather than by Cooper pairs. The fractional ac Josephson effect can be observed experimentally by measuring frequency spectrum of microwave radiation from the junction.Comment: 8 pages, 3 figures, RevTEX 4; v2. - minor typos corrected in proof
    corecore