80 research outputs found

    Voronoi Particle Merging Algorithm for PIC Codes

    Full text link
    We present a new particle-merging algorithm for the particle-in-cell method. Based on the concept of the Voronoi diagram, the algorithm partitions the phase space into smaller subsets, which consist of only particles that are in close proximity in the phase space to each other. We show the performance of our algorithm in the case of the two-stream instability and the magnetic shower.Comment: 11 figure

    Longitudinal emittance blow-up and hollow bunches with arbitrarily-shaped noise in the SPS as LHC test-bed

    Get PDF
    In the SPS the LHC type high intensity beam can be kept stable longitudinally during acceleration to 450 GeV/c by using the 800 MHz higher harmonic system and, in addition, by making a longitudinal controlled emittance increase by a factor of about 1.5. This latter is obtained by applying band-limited RF phase noise via the main RF system. In LHC itself, which does not have a higher harmonic system, an emittance increase by a factor 2.5 is required. This was attempted in the SPS, as a test-bed for LHC, with shaped RF phase noise and with the 800 MHz system switched off - limiting the maximum stable beam intensity. The emittance of a single (LHC-) pilot bunch has been blown up to a factor 2.5 in coast at 270 GeV/c with a final âgoodâ bunch shape. It remains to be demonstrated that this technique can also be applied successfully for many high intensity bunches with differing synchrotron frequency profiles along the batches. Also a first very quick test to create hollow bunches was done

    Longitudinal beam parameters and quality checks of the LHC beam in the SPS: further results and comparisons

    Get PDF
    Controlled longitudinal emittance blow up is used, along with other measures, to stabilize the nominal LHC beam in the SPS. Two Machine Development studies (MDs) were carried out in 2007 to evaluate the effectiveness of different noise settings for the longitudinal blow up of the beam. The noise settings are affected by both the presence of the 800 MHz RF system and intensity effects which modify the synchrotron frequency distribution inside the bunch. The results for the first MD are reported in Note [1]. This Note reports on the results of the second MD, carried out on 2007-10-17, as well as the comparison between the two in order to analyse the differences between the two occasions. Figures of merit are used that allow rapid evaluation of the quality of the beam as for example stability and bunch length uniformity across batches

    Study of Controlled Longitudinal Emittance Blow-Up for High Intensity LHC Beams in the CERN SPS

    Get PDF
    Preventive longitudinal emittance blow-up, in addition to a fourth harmonic Landau damping RF system, is required to keep the LHC beam in the SPS stable up to extraction. The beam is blown-up in a controlled way during the acceleration ramp by using band-limited phase noise targeted to act inside the synchrotron frequency spread, which is itself modified both by the second RF system and by intensity effects (beam loading and others). For a high intensity beam these latter effects can lead to a non-uniform emittance blow-up and even loss of stability for certain bunches in the batch. In this paper we present studies of the emittance blow-up achieved with high intensity beams under different conditions of both RF and noise parameters

    Study of Different Operating Modes of the 4th RF Harmonic Landau Damping System in the CERN SPS

    Get PDF
    To study possible cures for multi-bunch instabilities observed with the present high intensity proton beam in the SPS, a fourth harmonic RF system was used during acceleration in bunch lengthening and bunch shortening modes of operation. The latter mode was found to be more efficient in controlling beam stability. We present an analysis of possible reasons

    Beam Losses and Lifetime of the LHC Beam in the SPS

    Get PDF
    Studies of the LHC beam loss in the SPS started in 2003 [1], [2] and continued in 2004. The flat bottom losses strongly depend on the batch intensity and the RF voltage. For beam with the 75 ns spacing at the same bunch intensity they are smaller than for the 25 ns spaced bunches. Large voltage on the flat bottom together with some optimum voltage at injection helps to reduce losses. Analysis of data from 2003 has shown that observations are compatible with a diffusion like process on the flat bottom. Therefore significant time during 2004 was devoted to studies of possible RF noise sources. However the main improvement in beam lifetime on the flat bottom was observed after a change in the working point in the transverse plane (MD on 1.09.2004). In this Note we present measurements of beam loss and lifetime done during several dedicated SPS MDs for different conditions in the ring. Analysis of beam coasts will be presented separately

    Reference Measurements of the Longitudinal Impedance in the CERN SPS

    Get PDF
    First reference measurements of the longitudinal impedance were made with beam in the SPS machine in 1999 to quantify the results of the impedance reduction programme, completed in 2001. The 2001 data showed that the low-frequency inductive impedance had been reduced by a factor 2.5 and that bunch lengthening due to the microwave instability was absent up to the ultimate LHC bunch intensity. Measurements of the quadrupole frequency shift with intensity in the following years suggest a significant increase in impedance (which nevertheless remains below the 1999 level) due to the installation of eight extraction kickers for beam transfer to the LHC. The experimental results are compared with expectations based on the known longitudinal impedance of the SPS

    Natural noise and external wake field seeding in a proton-driven plasma accelerator

    Get PDF
    We discuss the level of natural shot noise in a proton bunch-driven plasma accelerator. The required seeding for the plasma wake field must be larger than the cumulative shot noise. This is the necessary condition for the axial symmetry of the generated wake and the acceleration quality. We develop an analytical theory of the noise field and compare it with multi-dimensional simulations. It appears that the natural noise wake field generated in plasma by the available at CERN super-protons-synchrotron (SPS) bunches is very low, at the level of a few 10 kV/m. This fortunate fact eases the requirements on the seed. Our three dimensional simulations show that even a few tens MeV electron bunch precursor of a very moderate intensity is sufficient to seed the proton bunch self-modulation in plasma.Comment: 5 pages, 5 figure

    Status of the LHC proton beam in the CERN SPS

    Get PDF
    During the 2000-2001 shutdown the SPS has undergone a major hardware upgrade to cope with its role of LHC injector. An impedance reduction campaign, improvements to the RF beam-control systems, and modifications to the injection kicker magnets and transverse feedback were the main items of this upgrade. By the end of the 2001 run, after a series of machine development sessions, a single LHC batch with half the nominal intensity could be accelerated from 26 to 450 GeV/c, the LHC injection energy, with nominal longitudinal and transverse parameters. At present the major known obstacle to the achievement of the nominal LHC beam with four batches is the beam-induced electron cloud. This generates both dramatic vacuum pressure increases and fast single and coupled bunch transverse instabilities. The problems encountered with this high brilliance beam and solutions developed so far are presented. Possible cures for the existing limitations are outlined
    • …
    corecore