83 research outputs found

    Ortho-para transition rate in μ\mu-molecular hydrogen and the proton's induced pseudoscalar coupling gpg_p

    Full text link
    We report a measurement of the ortho-para transition rate in the pμ\mup molecule. The experiment was conducted at TRIUMF via the measurement of the time dependence of the 5.2 MeV neutrons from muon capture in liquid hydrogen. The measurement yielded an ortho-para rate Λop=(11.1±1.7±0.60.9)×104\Lambda_{op} = (11.1 \pm 1.7 \pm^{0.9}_{0.6}) \times 10^4 s1^{-1} that is substantially larger than the earlier result of Bardin {\it et al.} We discuss the striking implications for the proton's induced pseudoscalar coupling gpg_p.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Molecular serum signature of treatment resistant depression

    Get PDF
    Rationale: A substantial number of patients suffering from major depressive disorder (MDD) do not respond to multiple trials of anti-depressants, develop a chronic course of disease and become treatment resistant. Most of the studies investigating molecular changes in treatment-resistant depression (TRD) have only examined a limited number of molecules and genes. Consequently, biomarkers associated with TRD are still lacking. Objectives: This study aimed to use recently advanced high-throughput proteomic platforms to identify peripheral biomarkers of TRD defined by two staging models, the Thase and Rush staging model (TRM) and the Maudsley Staging Model (MSM). Methods: Serum collected from an inpatient cohort of 65 individuals suffering from MDD was analysed using two different mass spectrometric-based platforms, label-free liquid chromatography mass spectrometry (LC-MSE) and selective reaction monitoring (SRM), as well as a multiplex bead based assay. Results: In the LC-MSE analysis, proteins involved in the acute phase response and complement activation and coagulation were significantly different between the staging groups in both models. In the multiplex bead-based assay analysis TNF-α levels (log(odds) = −4.95, p = 0.045) were significantly different in the TRM comparison. Using SRM, significant changes of three apolipoproteins A–I (β = 0.029, p = 0.035), M (β = −0.017, p = 0.009) and F (β = −0.031, p = 0.024) were associated with the TRM but not the MSM. Conclusion: Overall, our findings suggest that proteins, which are involved in immune and complement activation, may represent potential biomarkers that could be used by clinicians to identify high-risk patients. Nevertheless, given that the molecular changes between the staging groups were subtle, the results need to be interpreted cautiously

    The hyperfine transition in light muonic atoms of odd Z

    Full text link
    The hyperfine (hf) transition rates for muonic atoms have been re-measured for select light nuclei, using neutron detectors to evaluate the time dependence of muon capture. For 19^{19}F Λ\Lambdah_{h} = 5.6 (2) μ\mus1^{-1} for the hf transition rate, a value which is considerably more accurate than previous measurements. Results are also reported for Na, Al, P, Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys. Rev.

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Parity Violation in Proton-Proton Scattering

    Full text link
    Measurements of parity-violating longitudinal analyzing powers (normalized asymmetries) in polarized proton-proton scattering provide a unique window on the interplay between the weak and strong interactions between and within hadrons. Several new proton-proton parity violation experiments are presently either being performed or are being prepared for execution in the near future: at TRIUMF at 221 MeV and 450 MeV and at COSY (Kernforschungsanlage Juelich) at 230 MeV and near 1.3 GeV. These experiments are intended to provide stringent constraints on the set of six effective weak meson-nucleon coupling constants, which characterize the weak interaction between hadrons in the energy domain where meson exchange models provide an appropriate description. The 221 MeV is unique in that it selects a single transition amplitude (3P2-1D2) and consequently constrains the weak meson-nucleon coupling constant h_rho{pp}. The TRIUMF 221 MeV proton-proton parity violation experiment is described in some detail. A preliminary result for the longitudinal analyzing power is Az = (1.1 +/-0.4 +/-0.4) x 10^-7. Further proton-proton parity violation experiments are commented on. The anomaly at 6 GeV/c requires that a new multi-GeV proton-proton parity violation experiment be performed.Comment: 13 Pages LaTeX, 5 PostScript figures, uses espcrc1.sty. Invited talk at QULEN97, International Conference on Quark Lepton Nuclear Physics -- Nonperturbative QCD Hadron Physics & Electroweak Nuclear Processes --, Osaka, Japan May 20--23, 199

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    TRIUMF experiment 497 has measured the parity violating longitudinal analyzing power, A_z, in pp elastic scattering at 221.3 MeV incident proton energy. This paper includes details of the corrections, some of magnitude comparable to A_z itself, required to arrive at the final result. The largest correction was for the effects of first moments of transverse polarization. The addition of the result, A_z=(0.84 \pm 0.29 (stat.) \pm 0.17 (syst.)) \times 10^{-7}, to the pp parity violation experimental data base greatly improves the experimental constraints on the weak meson-nucleon coupling constants h^{pp}_\rho and h^{pp}_\omega, and has implications for the interpretation of electron parity violation experiments.Comment: 17 pages RevTeX, 14 PostScript figures. Revised version with additions suggested by Phys. Rev.

    Parity Violation in Proton-Proton Scattering at 221 MeV

    Full text link
    The parity-violating longitudinal analyzing power, Az, has been measured in pp elastic scattering at an incident proton energy of 221 MeV. The result obtained is Az =(0.84 +/- 0.29 (stat.) +/- 0.17 (syst.)) x 10^{-7}. This experiment is unique in that it selects a single parity violating transition amplitude, 3P2-1D2, and consequently directly constrains the weak meson-nucleon coupling constant h^pp_rho When this result is taken together with the existing pp parity violation data, the weak meson-nucleon coupling constants h^pp_rho and h^pp_omega can, for the first time, both be determined.Comment: 8 pages RevTeX4, 3 PostScript figures. Conclusion revised. New information about weak coupling constants adde

    Unwinding of primer-templates by archaeal family-B DNA polymerases in response to template-strand uracil

    Get PDF
    Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall replication on encountering uracil in template strands, four bases ahead of the primer-template junction. Should the polymerase progress further towards the uracil, for example, to position uracil only two bases in front of the junction, 3′–5′ proof-reading exonuclease activity becomes stimulated, trimming the primer and re-setting uracil to the +4 position. Uracil sensing prevents copying of the deaminated base and permanent mutation in 50% of the progeny. This publication uses both steady-state and time-resolved 2-aminopurine fluorescence to show pronounced unwinding of primer-templates with Pyrococcus furiosus (Pfu) polymerase–DNA complexes containing uracil at +2; much less strand separation is seen with uracil at +4. DNA unwinding has long been recognized as necessary for proof-reading exonuclease activity. The roles of M247 and Y261, amino acids suggested by structural studies to play a role in primer-template unwinding, have been probed. M247 appears to be unimportant, but 2-aminopurine fluorescence measurements show that Y261 plays a role in primer-template strand separation. Y261 is also required for full exonuclease activity and contributes to the fidelity of the polymerase

    Thermostable DNA Polymerase from a Viral Metagenome Is a Potent RT-PCR Enzyme

    Get PDF
    Viral metagenomic libraries are a promising but previously untapped source of new reagent enzymes. Deep sequencing and functional screening of viral metagenomic DNA from a near-boiling thermal pool identified clones expressing thermostable DNA polymerase (Pol) activity. Among these, 3173 Pol demonstrated both high thermostability and innate reverse transcriptase (RT) activity. We describe the biochemistry of 3173 Pol and report its use in single-enzyme reverse transcription PCR (RT-PCR). Wild-type 3173 Pol contains a proofreading 3′-5′ exonuclease domain that confers high fidelity in PCR. An easier-to-use exonuclease-deficient derivative was incorporated into a PyroScript RT-PCR master mix and compared to one-enzyme (Tth) and two-enzyme (MMLV RT/Taq) RT-PCR systems for quantitative detection of MS2 RNA, influenza A RNA, and mRNA targets. Specificity and sensitivity of 3173 Pol-based RT-PCR were higher than Tth Pol and comparable to three common two-enzyme systems. The performance and simplified set-up make this enzyme a potential alternative for research and molecular diagnostics

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio
    corecore