131 research outputs found
Abundance analysis of a CEMP-no star in the Carina dwarf spheroidal galaxy
Carbon-enhanced metal-poor (CEMP) stars bear important imprints of the early
chemical enrichment of any stellar system. While these stars are known to exist
in copious amounts in the Milky Way halo, detailed chemical abundance data from
the faint dwarf spheroidal (dSph) satellites are still sparse, although the
relative fraction of these stars increases with decreasing metallicity. Here,
we report the abundance analysis of a metal-poor ([Fe/H]= dex),
carbon-rich ([C/Fe]=1.4 dex) star, ALW-8, in the Carina dSph using
high-resolution spectroscopy obtained with the ESO/UVES instrument. Its
spectrum does not indicate any over-enhancements of neutron capture elements.
Thus classified as a CEMP-no star, this is the first detection of this kind of
star in Carina. Another of our sample stars, ALW-1, is shown to be a CEMP-
star, but its immediate binarity prompted us to discard it from a detailed
analysis. The majority of the 18 chemical elements we measured are typical of
Carina's field star population and also agree with CEMP stars in other dSph
galaxies. Similar to the only known CEMP-no star in the Sculptor dSph and the
weak--process star HD 122563, the lack of any strong barium-enhancement is
accompanied by a moderate overabundance in yttrium, indicating a weak
-process activity. The overall abundance pattern confirms that, also in
Carina, the formation site for CEMP-no stars has been affected by both faint
supernovae and by standard core collapse supernovae. Whichever process was
responsible for the heavy element production in ALW-8 must be a ubiquitous
source to pollute the CEMP-no stars, acting independently of the environment
such as in the Galactic halo or in dSphs.Comment: Accepted for publication in A&
Spectroscopy of the post-AGB star HD 101584(IRAS 11385-5517)
From an analysis of the spectrum (4000\AA to 8800\AA) of HD~101584 it is
found that most of the neutral and single ionized metallic lines are in
emission. The forbidden emission lines of [OI] 6300\AA and 6363\AA and [CI]
8727\AA are detected, which indicate the presence of a very low excitation
nebula. The H, FeII 6383\AA, NaI D, D lines and the CaII IR
triplet lines show P-Cygni profiles indicating a mass outflow. The H
line shows many velocity components in the profile. The FeII 6383\AA also has
almost the same line profile as the H line indicating that they are
formed in the same region. From the spectrum synthesis analysis we find the
atmospheric parameters to be T=8500K, log g=1.5,
V=13km~s and [Fe/H]=0.0. From an analysis of the absorption
lines the photospheric abundances of some of the elements are derived. Carbon
and nitrogen are found to be overabundant. From the analysis of Fe emission
lines we derived T=6100K200 for the emission line region.Comment: To appear in A&A, 15 pages, 11 figure
Fluorine in a Carbon-Enhanced Metal-Poor Star
The fluorine abundance of the Carbon-Enhanced Metal-Poor (CEMP) star HE
1305+0132 has been derived by analysis of the molecular HF (1-0) R9 line at
2.3357 microns in a high-resolution (R = 50,000) spectrum obtained with the
Phoenix spectrometer and Gemini-South telescope. Our abundance analysis makes
use of a CNO-enhanced ATLAS12 model atmosphere characterized by a metallicity
and CNO enhancements determined utilizing medium-resolution (R = 3,000) optical
and near-IR spectra. The effective iron abundance is found to be [Fe/H] = -2.5,
making HE 1305+0132 the most Fe-deficient star, by more than an order of
magnitude, for which the abundance of fluorine has been measured. Using
spectral synthesis, we derive a super-solar fluorine abundance of A(19F) = 4.96
+/- 0.21, corresponding to a relative abundance of [F/Fe] = 2.90. A single line
of the Phillips C_2 system is identified in our Phoenix spectrum, and along
with multiple lines of the first-overtone vibration-rotation CO (3-1) band
head, C and O abundances of A(12C) = 8.57 +/- 0.11 and A(16O) = 7.04 +/- 0.14
are derived. We consider the striking fluorine overabundance in the framework
of the nucleosynthetic processes thought to be responsible for the
C-enhancement of CEMP stars and conclude that the atmosphere of HE 1305+0132
was polluted via mass transfer by a primary companion during its asymptotic
giant branch phase. This is the first study of fluorine in a CEMP star, and it
demonstrates that this rare nuclide can be a key diagnostic of nucleosynthetic
processes in the early Galaxy.Comment: 13 pages, 3 figures; Accepted for publication in ApJ Letter
Early time optical spectroscopy of supernova SN 1998S
We present medium-resolution optical spectra of the type II supernova SN 1998S obtained during the pre-maximum, maximum and early decline phases. The early decline spectra show complex Balmer line profiles: a narrow P-Cygni emission feature superimposed on a broad emission. The narrow emission has a redshift similar to that of the host galaxy, indicating its origin from a pre-supernova circumstellar material. The Hα luminosity of the broad component implies a shell mass of ~ 0.1 M☉ for the supernova ejecta, while the luminosity of the narrow component implies a mass loss rate of 10-4M☉ yr-1 for the precursor. The photospheric temperature of the supernova shell decreased from a value of 18400±2900 K on day 17 to a value of 7500±1200 K on day 44. The observations indicate SN 1998S belongs to type IIn supernovae where the supernova ejecta dynamically interact with a pre-supernova circumstellar material
Properties and occurrence rates of exoplanet candidates as a function of host star metallicity from the DR25 catalog
Correlations between the occurrence rate of exoplanets and their host star
properties provide important clues about the planet formation processes. We
studied the dependence of the observed properties of exoplanets (radius, mass,
and orbital period) as a function of their host star metallicity. We analyzed
the planetary radii and orbital periods of over 2800 candidates from
the latest data release DR25 (Q1-Q17) with revised planetary radii
based on ~DR2 as a function of host star metallicity (from the Q1-Q17
(DR25) stellar and planet catalog). With a much larger sample and improved
radius measurements, we are able to reconfirm previous results in the
literature. We show that the average metallicity of the host star increases as
the radius of the planet increases. We demonstrate this by first calculating
the average host star metallicity for different radius bins and then
supplementing these results by calculating the occurrence rate as a function of
planetary radius and host star metallicity. We find a similar trend between
host star metallicity and planet mass: the average host star metallicity
increases with increasing planet mass. This trend, however, reverses for masses
: host star metallicity drops with increasing planetary
mass. We further examined the correlation between the host star metallicity and
the orbital period of the planet. We find that for planets with orbital periods
less than 10 days, the average metallicity of the host star is higher than that
for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical
Journa
- …