The fluorine abundance of the Carbon-Enhanced Metal-Poor (CEMP) star HE
1305+0132 has been derived by analysis of the molecular HF (1-0) R9 line at
2.3357 microns in a high-resolution (R = 50,000) spectrum obtained with the
Phoenix spectrometer and Gemini-South telescope. Our abundance analysis makes
use of a CNO-enhanced ATLAS12 model atmosphere characterized by a metallicity
and CNO enhancements determined utilizing medium-resolution (R = 3,000) optical
and near-IR spectra. The effective iron abundance is found to be [Fe/H] = -2.5,
making HE 1305+0132 the most Fe-deficient star, by more than an order of
magnitude, for which the abundance of fluorine has been measured. Using
spectral synthesis, we derive a super-solar fluorine abundance of A(19F) = 4.96
+/- 0.21, corresponding to a relative abundance of [F/Fe] = 2.90. A single line
of the Phillips C_2 system is identified in our Phoenix spectrum, and along
with multiple lines of the first-overtone vibration-rotation CO (3-1) band
head, C and O abundances of A(12C) = 8.57 +/- 0.11 and A(16O) = 7.04 +/- 0.14
are derived. We consider the striking fluorine overabundance in the framework
of the nucleosynthetic processes thought to be responsible for the
C-enhancement of CEMP stars and conclude that the atmosphere of HE 1305+0132
was polluted via mass transfer by a primary companion during its asymptotic
giant branch phase. This is the first study of fluorine in a CEMP star, and it
demonstrates that this rare nuclide can be a key diagnostic of nucleosynthetic
processes in the early Galaxy.Comment: 13 pages, 3 figures; Accepted for publication in ApJ Letter