71 research outputs found

    Colloidal CuFeS2 Nanocrystals: Intermediate Fe d-Band Leads to High Photothermal Conversion Efficiency

    Get PDF
    We describe the colloidal hot-injection synthesis of phase-pure nanocrystals (NCs) of a highly abundant mineral, chalcopyrite (CuFeS2). Absorption bands centered at around 480 and 950 nm, spanning almost the entire visible and near infrared regions, encompass their optical extinction characteristics. These peaks are ascribable to electronic transitions from the valence band (VB) to the empty intermediate band (IB), located in the fundamental gap and mainly composed of Fe 3d orbitals. Laser-irradiation (at 808 nm) of an aqueous suspension of CuFeS2 NCs exhibited significant heating, with a photothermal conversion efficiency of 49%. Such efficient heating is ascribable to the carrier relaxation within the broad IB band (owing to the indirect VB-IB gap), as corroborated by transient absorption measurements. The intense absorption and high photothermal transduction efficiency (PTE) of these NCs in the so-called biological window (650-900 nm) makes them suitable for photothermal therapy as demonstrated by tumor cell annihilation upon laser irradiation. The otherwise harmless nature of these NCs in dark conditions was confirmed by in vitro toxicity tests on two different cell lines. The presence of the deep Fe levels constituting the IB is the origin of such enhanced PTE, which can be used to design other high performing NC photothermal agents.Comment: 12 pages, Chemistry of Materials, 31-May-201

    Network structure indexes to forecast epidemic spreading in real-world complex networks

    Get PDF
    Complex networks are the preferential framework to model spreading dynamics in several real-world complex systems. Complex networks can describe the contacts between infectious individuals, responsible for disease spreading in real-world systems. Understanding how the network structure affects an epidemic outbreak is therefore of great importance to evaluate the vulnerability of a network and optimize disease control. Here we argue that the best network structure indexes (NSIs) to predict the disease spreading extent in real-world networks are based on the notion of network node distance rather than on network connectivity as commonly believed. We numerically simulated, via a type-SIR model, epidemic outbreaks spreading on 50 real-world networks. We then tested which NSIs, among 40, could a priori better predict the disease fate. We found that the “average normalized node closeness” and the “average node distance” are the best predictors of the initial spreading pace, whereas indexes of “topological complexity” of the network, are the best predictors of both the value of the epidemic peak and the final extent of the spreading. Furthermore, most of the commonly used NSIs are not reliable predictors of the disease spreading extent in real-world networks

    A comparison of node vaccination strategies to halt SIR epidemic spreading in real-world complex networks

    Get PDF
    : We compared seven node vaccination strategies in twelve real-world complex networks. The node vaccination strategies are modeled as node removal on networks. We performed node vaccination strategies both removing nodes according to the initial network structure, i.e., non-adaptive approach, and performing partial node rank recalculation after node removal, i.e., semi-adaptive approach. To quantify the efficacy of each vaccination strategy, we used three epidemic spread indicators: the size of the largest connected component, the total number of infected at the end of the epidemic, and the maximum number of simultaneously infected individuals. We show that the best vaccination strategies in the non-adaptive and semi-adaptive approaches are different and that the best strategy also depends on the number of available vaccines. Furthermore, a partial recalculation of the node centrality increases the efficacy of the vaccination strategies by up to 80%

    Considering weights in real social networks: A review

    Get PDF
    Network science offers powerful tools to model complex social systems. Most social network science research focuses on topological networks by simply considering the binary state of the links, i.e., their presence or absence. Nonetheless, complex social systems present heterogeneity in link interactions (link weight), and accounting for this heterogeneity, it is mandatory to design reliable social network models. Here, we revisit the topic of weighted social networks (WSNs). By summarizing the main notions, findings, and applications in the field of WSNs, we outline how WSN methodology may improve the modeling of several real problems in social sciences. We are convinced that WSNs may furnish ideas and insights to open interesting lines of new research in the social sciences

    Hexa-peri-benzocoronene with two extra K-regions in an ortho-configuration

    Get PDF
    There are three possible isomers for hexa-peri-hexabenzocoronene (HBC) with two extra K-regions, but only two of them have been reported, namely with the meta- and para-configurations. Herein, we describe the synthesis of HBC 4 with two extra K-regions in the ortho-configuration, forming a longer zigzag edge compared with the other two isomers. The structure of 4 was validated by laser desorption/ionization time-of-flight mass analysis and nuclear magnetic resonance spectra, as well as Raman and infrared spectroscopies supported by density functional theory calculations. The optical properties of 4 were investigated by UV/vis absorption and ultrafast transient absorption spectroscopy. Together with the analysis of aromaticity, the influence of the zigzag edge on the π-conjugation pathway and HOMO-LUMO gaps of the three isomers were investigated

    Gold Nanorods as Radiopharmaceutical Carriers: Preparation and Preliminary Radiobiological In Vitro Tests

    Get PDF
    Low-energy electrons (Auger electrons) can be produced via the interaction of photons with gold atoms in gold nanorods (AuNRs). These electrons are similar to those emitted during the decay of technetium-99m (99mTc), a radioactive nuclide widely used for diagnostics in nuclear medicine. Auger and internal conversion (IC) electron emitters appropriately targeted to the DNA of tumors cells may, therefore, represent a new radiotherapeutic approach. 99mTc radiopharmaceuticals, which are used for diagnosis, could indeed be used in theragnostic fields when loaded on AuNRs and delivered to a tumor site. This work aims to provide a proof of concept (i) to evaluate AuNRs as carriers of 99mTc-based radiopharmaceuticals, and (ii) to evaluate the efficacy of Auger electrons emitted by photon-irradiated AuNRs in inducing radio-induced damage in T98G cells, thus mimicking the effect of Auger electrons emitted during the decay of 99mTc used in clinical settings. Data are presented on AuNRs’ chemical characterization (with an aspect ratio of 3.2 and Surface Plasmon Resonance bands at 520 and 680 nm) and the loading of pharmaceuticals (after 99mTc decay) on their surface. Spectroscopic characterizations, such as UV-Vis and synchrotron radiation-induced X-ray photoelectron (SR-XPS) spectroscopies, were performed to investigate the drug–AuNR interaction. Finally, preliminary radiobiological data on cell killing with AuNRs are presented

    Radioguided surgery with \u3b2 radiation: a novel application with Ga68.

    Get PDF
    Radio Guided Surgery is a technique helping the surgeon in the resection of tumors: a radiolabeled tracer is administered to the patient before surgery and then the surgeon evaluates the completeness of the resection with a handheld detector sensitive to emitted radiation. Established methods rely on \u3b3 emitting tracers coupled with \u3b3 detecting probes. The efficacy of this technique is however hindered by the high penetration of \u3b3 radiation, limiting its applicability to low background conditions. To overtake such limitations, a novel approach to RGS has been proposed, relying on \u3b2- emitting isotopes together with a dedicated \u3b2 probe. This technique has been proved to be effective in first ex-vivo trials. We discuss in this paper the possibility to extend its application cases to 68Ga, a \u3b2+ emitting isotope widely used today in nuclear medicine. To this aim, a retrospective study on 45 prostatic cancer patients was performed, analysing their 68Ga-PSMA PET images to asses if the molecule uptake is enough to apply this technique. Despite the expected variability both in terms of SUV (median 4.1, IQR 3.0-6.1) and TNR (median 9.4, IQR 5.2-14.6), the majority of cases have been found to be compatible with \u3b2-RGS with reasonable injected activity and probing time (5\u2009s)

    90Y-DOTA-nimotuzumab: synthesis of a promising ÎČ⁻ radiopharmaceutical

    Get PDF
    BACKGROUND: Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody, nowadays used for tumour immunochemotherapy. This study aimed to label the conjugate DOTA-nimotuzumab with yttrium-90, in order to provide a beta- emitting radioimmunoconjugate (90Y-DOTA-nimotuzumab) potentially useful to assess the feasibility of a new radio-guided surgery approach.METHODS: The synthesis of 90Y-DOTA-nimotuzumab was performed in two days. Nimotuzumab was conjugated with a 50 fold excess of DOTA and then labelled with 90Y3+. The 90Y-DOTA-nimotuzumab preparation was optimized considering several parameters such as pH, temperature and reaction volume. Moreover, the 90Y-DOTA-nimotuzumab stability was evaluated in human plasma.RESULTS: The radioimmunoconjugate 90Y-DOTA-nimotuzumab was obtained with a radiochemical purity greater than 96%, and showed a good stability at 20°C as well as at 37°C in human plasma.CONCLUSIONS: The optimized conditions for a mild and easy preparation of 90Y-DOTA-nimotuzumab joined to a promising stability under physiological conditions suggest to propose this radioimmunoconjugate as a potential diagnostic radiopharmaceutical for beta- radio-guided surgery

    Modularity affects the robustness of scale-free model and real-world social networks under betweenness and degree-based node attack

    Get PDF
    In this paper we investigate how the modularity of model and real-world social networks affect their robustness and the efficacy of node attack (removal) strategies based on node degree (ID) and node betweenness (IB). We build Barabasi–Albert model networks with different modularity by a new ad hoc algorithm that rewire links forming networks with community structure. We traced the network robustness using the largest connected component (LCC). We find that when model networks present absent or low modular structure ID strategy is more effective than IB to decrease the LCC. Conversely, in the case the model network present higher modularity, the IB strategy becomes the most effective to fragment the LCC. In addition, networks with higher modularity present a signature of a 1st order percolation transition and a decrease of the LCC with one or several abrupt changes when nodes are removed, for both strategies; differently, networks with non-modular structure or low modularity show a 2nd order percolation transition networks when nodes are removed. Last, we investigated how the modularity of the network structure evaluated by the modularity indicator (Q) affect the network robustness and the efficacy of the attack strategies in 12 real-world social networks. We found that the modularity Q is negatively correlated with the robustness of the real-world social networks for both the node attack strategies, especially for the IB strategy (p-value < 0.001). This result indicates how real-world networks with higher modularity (i.e. with higher community structure) may be more fragile to node attack. The results presented in this paper unveil the role of modularity and community structure for the robustness of networks and may be useful to select the best node attack strategies in network

    Deciphering Photoinduced Charge Transfer Dynamics in a Cross-Linked Graphene-Dye Nanohybrid

    Get PDF
    The search for synthetic materials that mimic natural photosynthesis by converting solar energy into other more useful forms of energy is an ever-growing research endeavor. Graphene-based materials, with their exceptional electronic and optical properties, are exemplary candidates for high-efficiency solar energy harvesting devices. High photoactivity can be conveniently achieved by functionalizing graphene with small molecule organic semiconductors whose band-gaps can be tuned by structural modification, leading to interactions between the π-conjugated electronic systems in both the semiconductor and graphene. Here we investigate the ultrafast transient optical properties of a cross-linked graphene-dye (diphenyl-dithiophenediketopyrrolopyrrole) nanohybrid material, in which oligomers of the organic semiconductor dye are covalently bound to a random network of few-layer graphene flakes, and compare the results to those obtained for the reference dye monomer. Using a combination of ultrafast transient absorption and two-dimensional electronic spectroscopy, we provide substantial evidence for photoinduced charge transfer that occurs within 18 ps in the nanohybrid system. Notably, subpicosecond photoinduced torsional relaxation observed in the constituent dye monomer is absent in the cross-linked nanohybrid system. Through density functional theory calculations, we compare the competing effects of covalent bonding, increasing conjugation length, and the presence of multiple graphene flakes. We find evidence that the observed ultrafast charge transfer process occurs through a superexchange mechanism in which the oligomeric dye bridge provides virtual states enabling charge transfer between graphene-dye covalent bond sites
    • 

    corecore