937 research outputs found
A Robust and Ultra-Fast Short Circuit Detection in Half-Bridge Using Stray Voltage Capture:Applied in Electromagnetic Suspension
The paper proposes a robust and ultra-fast short circuit detection method based on the voltage dip in the half-bridge due to the presence of stray inductance. For the application of the inverter in electromagnetic suspension, the short circuit is detected in less than 100 ns, which is a promising solution against the Fault Under Load due to a Single-Event Burnout failure type
Resonant flux motion and I-V -characteristics in frustrated Josephson junctions
We describe the dynamics of fluxons moving in a frustrated Josephson junction
with p, d, and f-wave symmetry and calculate the I-V characteristics. The
behavior of fluxons is quite distinct in the long and short length junction
limit. For long junctions the intrinsic flux is bound at the center and the
moving integer fluxon or antifluxon interacts with it only when it approaches
the junction's center. For small junctions the intrinsic flux can move as a
bunched type fluxon introducing additional steps in the I-V characteristics.
Possible realization in quantum computation is presented.Comment: 21 pages, 8 figure
Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes
Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes
- …