23 research outputs found

    High-visibility multi-photon interference of Hanbury Brown - Twiss type for classical light

    Full text link
    Difference-phase (or Hanbury Brown - Twiss type) intensity interference of classical light is considered in higher orders in the intensity. It is shown that, while the visibility of sum-phase (NOON-type) interference for classical sources drops with the order of interference, the visibility of difference-phase interference has opposite behavior. For three-photon and four-photon interference of two coherent sources, the visibility can be as high as 81.8% and 94.4%, respectively. High-visibility three-photon and four-photon interference of space-time and polarization types has been observed in experiment, for both coherent and pseudo-thermal light.Comment: 11 pages, 9 figure

    Super-bunched bright squeezed vacuum state

    Full text link
    In this paper we experimentally study the statistical properties of a bright squeezed vacuum state containing up to 10^13 photons per mode (10 uJ per pulse), produced via high gain parametric down conversion (PDC). The effects of bunching and superbunching of photons were observed for a single mode PDC radiation by second-order intensity correlation function measurements with analog detectors.Comment: 4 pages, 3 figures, submitted to Optics Letter

    Testing Ultrafast Two-Photon Spectral Amplitudes via Optical Fibres

    Full text link
    We test two-dimensional TPSA of biphoton light emitted via ultrafast spontaneous parametric down-conversion (SPDC) using the effect of group-velocity dispersion in optical fibres. Further, we apply this technique to demonstrate the engineering of biphoton spectral properties by acting on the pump pulse shape

    Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum

    Full text link
    We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\% spectral narrowing.Comment: 9 pages, 6 figure

    Spectral properties of high-gain parametric down-conversion

    Full text link
    High-gain parametric down-conversion (PDC) is a source of bright squeezed vacuum, which is a macroscopic nonclassical state of light and a promising candidate for quantum information applications. Here we study its properties, such as the intensity spectral width and the spectral width of pairwise correlations.Comment: 9 pages, 5 figure

    Macroscopic Hong–Ou–Mandel interference

    Get PDF
    We report on a Hong–Ou–Mandel interference experiment for twin beams with photon numbers per mode as large as 106 generated via high-gain parametric down conversion (PDC). The standard technique of coincidence counting leads in this case to a dip with a very low visibility. By measuring, instead of coincidence counting rate, the variance of the photon-number difference, we observe an extremely well-pronounced peak. From the shape of the peak, one can infer information about the spectral properties of the PDC radiation, including the number of frequency/temporal modes
    corecore