2,956 research outputs found

    Conditions for magnetically induced singlet d-wave superconductivity on the square lattice

    Full text link
    It is expected that at weak to intermediate coupling, d-wave superconductivity can be induced by antiferromagnetic fluctuations. However, one needs to clarify the role of Fermi surface topology, density of states, pseudogap, and wave vector of the magnetic fluctuations on the nature and strength of the induced d-wave state. To this end, we study the generalized phase diagram of the two-dimensional half-filled Hubbard model as a function of interaction strength U/tU/t, frustration induced by second-order hopping t′/tt^{\prime}/t, and temperature T/tT/t. In experiment, U/tU/t and t′/tt^{\prime}/t can be controlled by pressure. We use the two-particle self-consistent approach (TPSC), valid from weak to intermediate coupling. We first calculate as a function of t′/tt^{\prime}/t and U/tU/t the temperature and wave vector at which the spin response function begins to grow exponentially.D-wave superconductivity in a half-filled band can be induced by such magnetic fluctuations at weak to intermediate coupling, but only if they are near commensurate wave vectors and not too close to perfect nesting conditions where the pseudogap becomes detrimental to superconductivity. For given U/tU/t there is thus an optimal value of frustration t′/tt^{\prime}/t where the superconducting TcT_c is maximum. The non-interacting density of states plays little role. The symmetry dx2−y2_{x^{2}-y^{2}} vs dxy_{xy} of the superconducting order parameter depends on the wave vector of the underlying magnetic fluctuations in a way that can be understood qualitatively from simple arguments

    Characteristics of oxygen isotope substitutions in the quasiparticle spectrum of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}

    Full text link
    There is an ongoing debate about the nature of the bosonic excitations responsible for the quasiparticle self energy in high temperature superconductors -- are they phonons or spin fluctuations? We present a careful analysis of the bosonic excitations as revealed by the `kink' feature at 70 meV in angle resolved photoemission data using Eliashberg theory for a d-wave superconductor. Starting from the assumption that nodal quasiparticles are not coupled to the (π,π)(\pi,\pi) magnetic resonance, the sharp structure at 7070 meV can be assigned to phonons. We find that not only can we account for the shifts of the kink energy seen on oxygen isotope substitution but also get a quantitative estimate of the fraction of the area under the electron-boson spectral density which is due to phonons. We conclude that for optimally doped Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} phonons contribute ∼10\sim 10% and non-phononic excitations ∼90\sim 90%.Comment: 6 pages, 3 figure

    Using Hierarchical Data Mining to Characterize Performance of Wireless System Configurations

    Full text link
    This paper presents a statistical framework for assessing wireless systems performance using hierarchical data mining techniques. We consider WCDMA (wideband code division multiple access) systems with two-branch STTD (space time transmit diversity) and 1/2 rate convolutional coding (forward error correction codes). Monte Carlo simulation estimates the bit error probability (BEP) of the system across a wide range of signal-to-noise ratios (SNRs). A performance database of simulation runs is collected over a targeted space of system configurations. This database is then mined to obtain regions of the configuration space that exhibit acceptable average performance. The shape of the mined regions illustrates the joint influence of configuration parameters on system performance. The role of data mining in this application is to provide explainable and statistically valid design conclusions. The research issue is to define statistically meaningful aggregation of data in a manner that permits efficient and effective data mining algorithms. We achieve a good compromise between these goals and help establish the applicability of data mining for characterizing wireless systems performance

    BSML: A Binding Schema Markup Language for Data Interchange in Problem Solving Environments (PSEs)

    Full text link
    We describe a binding schema markup language (BSML) for describing data interchange between scientific codes. Such a facility is an important constituent of scientific problem solving environments (PSEs). BSML is designed to integrate with a PSE or application composition system that views model specification and execution as a problem of managing semistructured data. The data interchange problem is addressed by three techniques for processing semistructured data: validation, binding, and conversion. We present BSML and describe its application to a PSE for wireless communications system design

    Higgs Structures of Dyonic Instantons

    Full text link
    We study Higgs field configurations of dyonic instantons in spontaneously broken (4+1)-dimensional Yang-Mills theory. The adjoint scalar field solutions to the covariant Laplace equation in the ADHM instanton background are constructed in general noncanonical basis, and they are used to study explicitly the Higgs field configurations of dyonic instantons when the gauge fields are taken by Jackiw-Nohl-Rebbi instanton solutions. For these solutions corresponding to small instanton number we then consider in some detail the zero locus of the Higgs field, which describes the cross section of supertubes connecting parallel D4-branes in string theory. Also the information on the Higgs zeroes is used to discuss the residual gauge freedom concerning the Jackiw-Nohl-Rebbi solutions.Comment: 1+27 pages, 6 figure

    Superconductivity and Pseudogap in Quasi-Two-Dimensional Metals around the Antiferromagnetic Quantum Critical Point

    Full text link
    Spin fluctuations (SF) and SF-mediated superconductivity (SC) in quasi-two-dimensional metals around the antiferrromagnetic (AF) quantum critical point (QCP) are investigated by using the self-consistent renormalization theory for SF and the strong coupling theory for SC. We introduce a parameter y0 as a measure for the distance from the AFQCP which is approximately proportional to (x-xc), x being the electron (e) or hole (h) doping concentration to the half-filled band and xc being the value at the AFQCP. We present phase diagrams in the T-y0 plane including contour maps of the AF correlation length and AF and SC transition temperatures TN and Tc, respectively. The Tc curve is dome-shaped with a maximum at around the AFQCP. The calculated one-electron spectral density shows a pseudogap in the high-density-of-states region near (pi,0) below around a certain temperature T* and gives a contour map at the Fermi energy reminiscent of the Fermi arc. These results are discussed in comparison with e- and h-doped high-Tc cuprates.Comment: 5 pages, 3 figure

    Variational Monte Carlo Study of Electron Differentiation around Mott Transition

    Full text link
    We study ground-state properties of the two-dimensional Hubbard model at half filling by improving variational Monte Carlo method and by implementing quantum-number projection and multi-variable optimization. The improved variational wave function enables a highly accurate description of the Mott transition and strong fluctuations in metals. We clarify how anomalous metals appear near the first-order Mott transition. The double occupancy stays nearly constant as a function of the on-site Coulomb interaction in the metallic phase near the Mott transition in agreement with the previous unbiased results. This unconventional metal at half filling is stabilized by a formation of ``electron-like pockets'' coexisting with an arc structure, which leads to a prominent differentiation of electrons in momentum space. An abrupt collapse of the ``pocket'' and ``arc'' drives the first-order Mott transition.Comment: 4 pages, 3 figure

    Trolling in asynchronous computer-mediated communication: From user discussions to academic definitions

    Get PDF
    Whilst computer-mediated communication (CMC) can benefit users by providing quick and easy communication between those separated by time and space, it can also provide varying degrees of anonymity that may encourage a sense of impunity and freedom from being held accountable for inappropriate online behaviour. As such, CMC is a fertile ground for studying impoliteness, whether it occurs in response to perceived threat (flaming), or as an end in its own right (trolling). Currently, first and secondorder definitions of terms such as im/politeness (Brown and Levinson 1987; Bousfield 2008; Culpeper 2008; Terkourafi 2008), in-civility (Lakoff 2005), rudeness (Beebe 1995, Kienpointner 1997, 2008), and etiquette (Coulmas 1992), are subject to much discussion and debate, yet the CMC phenomenon of trolling is not adequately captured by any of these terms. Following Bousfield (in press), Culpeper (2010) and others, this paper suggests that a definition of trolling should be informed first and foremost by user discussions. Taking examples from a 172-million-word, asynchronous CMC corpus, four interrelated conditions of aggression, deception, disruption, and success are discussed. Finally, a working definition of trolling is presented

    512 THE PROPER REHABILITATION EXERCISE IN PATIENITS WITH DEGENERATIVE ARTHRITIS OF THE TOTAL KNEE ARTHROPLASTY

    Get PDF
    • …
    corecore