6,785 research outputs found

    Improved Perturbative QCD Approach to the Bottomonium Spectrum

    Get PDF
    Recently it has been shown that the gross structure of the bottomonium spectrum is reproduced reasonably well within the non-relativistic boundstate theory based on perturbative QCD. In that calculation, however, the fine splittings and the S-P level splittings are predicted to be considerably narrower than the corresponding experimental values. We investigate the bottomonium spectrum within a specific framework based on perturbative QCD, which incorporates all the corrections up to O(alpha_S^5 m_b) and O(alpha_S^4 m_b), respectively, in the computations of the fine splittings and the S-P splittings. We find that the agreement with the experimental data for the fine splittings improves drastically due to an enhancement of the wave functions close to the origin as compared to the Coulomb wave functions. The agreement of the S-P splittings with the experimental data also becomes better. We find that natural scales of the fine splittings and the S-P splittings are larger than those of the boundstates themselves. On the other hand, the predictions of the level spacings between consecutive principal quantum numbers depend rather strongly on the scale mu of the operator \propto C_A/(m_b r^2). The agreement of the whole spectrum with the experimental data is much better than the previous predictions when mu \simeq 3-4 GeV for alpha_S(M_Z)=0.1181. There seems to be a phenomenological preference for some suppression mechanism for the above operator.Comment: 26 pages, 16 figures. Minor changes, to be published in PR

    Selection and reconstruction of the top quarks in the all-hadronic decays at a Linear Collider

    Get PDF
    A method of reconstruction of the top quarks produced in the process E+E- -> t\bar{t} -> 6 jets at a Linear Collider (LC) is proposed. The approach does not involve a kinematic fit, as well as assumptions on the invariant masses of the dijets originating from the decays of W bosons and, therefore, the method is expected to be less sensitive to theoretical and experimental uncertainties on the top-mass measurement than traditional reconstruction methods. For the first time, the reconstruction of the top quarks was investigated using the full LC detector simulation after taking into account the background arising from QCD multi-jet production.Comment: 22 pages, including 13 figures and 3 table

    Unsupervised deep learning-based reconfigurable intelligent surface aided broadcasting communications in industrial IoTs

    Get PDF
    This paper presents a general system framework which lays the foundation for Reconfigurable Intelligent Surface (RIS)-enhanced broadcast communications in Industrial Internet of Things (IIoTs). In our system model, we consider multiple sensor clusters co-existing in a smart factory where the direct links between these clusters and a central base station (BS) is blocked completely. In this context, an RIS is utilized to reflect signals broadcast from BS toward cluster heads (CHs) which act as a representative of clusters, where BS only has access to the statistical distribution of the channel state information (CSI). An analytical upper bound of the total ergodic spectral efficiency and an approximation of outage probability are derived. Based on these analytical results, two algorithms are introduced to control the phase shifts at RIS, which are the Riemannian conjugate gradient (RCG) method and the deep neural network (DNN) method. While the RCG algorithm operates based on the conventional iterative method, the DNN technique relies on unsupervised deep learning. Our numerical results show that the both algorithms achieve satisfactory performance based on only statistical CSI. In addition, compared to the RCG scheme, using deep learning reduces the computational latency by more than 10 times with an almost identical total ergodic spectral efficiency achieved. These numerical results reveal that while using conventional RCG method may provide unsatisfactory latency, DNN technique shows much promise for enabling RIS in ultra reliable and low latency communications (URLLC) in the context of IIoTs

    Top Quark Pair Production close to Threshold: Top Mass, Width and Momentum Distribution

    Full text link
    The complete NNLO QCD corrections to the total cross section σ(e+eZ,γttˉ)\sigma(e^+e^- \to Z*,\gamma*\to t\bar t) in the kinematic region close to the top-antitop threshold are calculated by solving the corresponding Schroedinger equations exactly in momentum space in a consistent momentum cutoff regularization scheme. The corrections coming from the same NNLO QCD effects to the top quark three-momentum distribution dσ/dktd\sigma/d |\vec k_t| are determined. We discuss the origin of the large NNLO corrections to the peak position and the normalization of the total cross section observed in previous works and propose a new top mass definition, the 1S mass M_1S, which stabilizes the peak in the total cross section. If the influence of beamstrahlung and initial state radiation on the mass determination is small, a theoretical uncertainty on the 1S top mass measurement of 200 MeV from the total cross section at the linear collider seems possible. We discuss how well the 1S mass can be related to the MSˉ\bar{MS} mass. We propose a consistent way to implement the top quark width at NNLO by including electroweak effects into the NRQCD matching coefficients, which then can become complex.Comment: 53 pages, latex; minor changes, a number of typos correcte

    Redescription of the sole species of the enigmatic solifuge genus Dinorhax Simon, 1879 (Solifugae: Melanoblossiidae) in Southeast Asia

    Get PDF
    We present the first recorded description of females of the species Dinorhax rostrumpsittaci (Simon, 1877) from solifugae specimens obtained from southern Vietnam. As a result of DNA barcoding using males identified as D. rostrumpsittaci and unidentified females, these female specimens made a highly supported cluster with male D. rostrumpsittaci. Hereby, we describe the female D. rostrumpsittaci and its natural habitats

    Top quark mass definition and top quark pair production near threshold at the NLC

    Full text link
    We suggest an infrared-insensitive quark mass, defined by subtracting the soft part of the quark self energy from the pole mass. We demonstrate the deep relation of this definition with the static quark-antiquark potential. At leading order in 1/m this mass coincides with the PS mass which is defined in a completely different manner. Going beyond static limit, the small normalization point introduces recoil corrections which are calculated here as well. Using this mass concept and other concepts for the quark mass we calculate the cross section of e+ e- -> t t-bar near threshold at NNLO accuracy adopting three alternative approaches, namely (1) fixing the pole mass, (2) fixing the PS mass, and (3) fixing the new mass which we call the PS-bar mass. We demonstrate that perturbative predictions for the cross section become much more stable if we use the PS or the PS-bar mass for the calculations. A careful analysis suggests that the top quark mass can be extracted from a threshold scan at NLC with an accuracy of about 100-200 MeV.Comment: published version, 21 pages in LaTeX including 11 PostScript figure
    corecore