2,548 research outputs found

    Managing Risk of Bidding in Display Advertising

    Full text link
    In this paper, we deal with the uncertainty of bidding for display advertising. Similar to the financial market trading, real-time bidding (RTB) based display advertising employs an auction mechanism to automate the impression level media buying; and running a campaign is no different than an investment of acquiring new customers in return for obtaining additional converted sales. Thus, how to optimally bid on an ad impression to drive the profit and return-on-investment becomes essential. However, the large randomness of the user behaviors and the cost uncertainty caused by the auction competition may result in a significant risk from the campaign performance estimation. In this paper, we explicitly model the uncertainty of user click-through rate estimation and auction competition to capture the risk. We borrow an idea from finance and derive the value at risk for each ad display opportunity. Our formulation results in two risk-aware bidding strategies that penalize risky ad impressions and focus more on the ones with higher expected return and lower risk. The empirical study on real-world data demonstrates the effectiveness of our proposed risk-aware bidding strategies: yielding profit gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on a commercial RTB platform over the widely applied bidding strategies

    Exploring morphological generality in the Old World monkey postcranium using an ecomorphological framework

    Get PDF
    Nearly all primates are ecologically dependent on trees but they are nonetheless found in an enormous range of habitats, from highly xeric environments to dense rainforest. Most primates have a relatively ‘generalised’ skeleton, enabling locomotor flexibility and facilitating other crucial functions, such as manual foraging and grooming. In this paper we explore associations between habitat, locomotion and morphology in the forelimbs of cercopithecids (Old World monkeys), contextualising their skeletal ecomorphological patterns with those of other mammals, and complementing functional morphological analyses with phylogenetic comparative techniques. We investigate the ecomorphological signals present in the generalised primate postcranium, and how an ancestral arboreal ‘bauplan’ might be modified to incorporate terrestriality or exploit distinct arboreal substrates. Analysis of ecomorphological variation in guenons indicates that terrestrial Chlorocebus species retain core elements of a general guenon form, with modifications for terrestriality that vary by species. Adaptation to different modes of arboreality has also occurred in Cercopithecus. The considerable morphological similarity in the guenons sampled emphasises the importance of generality in the primate postcranium – much forelimb variation appears to have emerged stochastically, with a smaller number of traits having a strong functional signal. Analysis of a broader sample of cercopithecids and comparison with felids, suids and bovids indicates that although the cercopithecid humerus has functional morphological signals that enable specimens to be assigned with a reasonable degree of certainty to habitat groups, there is considerable overlap in the specimens assigned to each habitat group. This probably reflects ecological dependence on trees, even in predominantly terrestrial species, as well as the multiple functions of the forelimb and, in some cases, wide geographic distributions that promote intraspecific variation. The use of phylogenetic correction reduced the discriminatory power of the models, indicating that, like allometry, phylogeny contains important ecomorphological information, and should not necessarily be factored out of analyses

    Statistics of Atmospheric Correlations

    Get PDF
    For a large class of quantum systems the statistical properties of their spectrum show remarkable agreement with random matrix predictions. Recent advances show that the scope of random matrix theory is much wider. In this work, we show that the random matrix approach can be beneficially applied to a completely different classical domain, namely, to the empirical correlation matrices obtained from the analysis of the basic atmospheric parameters that characterise the state of atmosphere. We show that the spectrum of atmospheric correlation matrices satisfy the random matrix prescription. In particular, the eigenmodes of the atmospheric empirical correlation matrices that have physical significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.

    Noise Dressing of Financial Correlation Matrices

    Full text link
    We show that results from the theory of random matrices are potentially of great interest to understand the statistical structure of the empirical correlation matrices appearing in the study of price fluctuations. The central result of the present study is the remarkable agreement between the theoretical prediction (based on the assumption that the correlation matrix is random) and empirical data concerning the density of eigenvalues associated to the time series of the different stocks of the S&P500 (or other major markets). In particular the present study raises serious doubts on the blind use of empirical correlation matrices for risk management.Comment: Latex (Revtex) 3 pp + 2 postscript figures (in-text

    Applying the framework for culturally responsive teaching to explore the adaptations that teach first beginning teachers use to meet the needs of their pupils in school

    Get PDF
    Previous research has shown that beginning teachers are capable of adapting their practice to the needs of ethnically diverse pupils. This paper investigates the possibility that such teachers were developing their practice into what I have termed culturally adaptive teaching. A variety of methods were used to collect qualitative data that focused on the perspectives of teachers in schools across Yorkshire and Humberside, (UK) over the course of an academic year. The framework for culturally responsive teaching (CRT) was used as a lens through which to analyse the data collected. It enabled findings to emerge that took the framework beyond that of CRT, to one of culturally adaptive teaching. Teachers continually adapted their practice, in terms of cultural sensitivity, to better meet the needs of their pupils. If we can apply this framework and support beginning teachers to help them understand issues of cultural diversity in the classroom, we might be able to engender a real systematic change in teaching for the benefit of pupils

    Phase Transitions and Oscillations in a Lattice Prey-Predator Model

    Full text link
    A coarse grained description of a two-dimensional prey-predator system is given in terms of a 3-state lattice model containing two control parameters: the spreading rates of preys and predators. The properties of the model are investigated by dynamical mean-field approximations and extensive numerical simulations. It is shown that the stationary state phase diagram is divided into two phases: a pure prey phase and a coexistence phase of preys and predators in which temporal and spatial oscillations can be present. The different type of phase transitions occuring at the boundary of the prey absorbing phase, as well as the crossover phenomena occuring between the oscillatory and non-oscillatory domains of the coexistence phase are studied. The importance of finite size effects are discussed and scaling relations between different quantities are established. Finally, physical arguments, based on the spatial structure of the model, are given to explain the underlying mechanism leading to oscillations.Comment: 11 pages, 13 figure

    Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models

    Full text link
    We study the general properties of stochastic two-species models for predator-prey competition and coexistence with Lotka-Volterra type interactions defined on a dd-dimensional lattice. Introducing spatial degrees of freedom and allowing for stochastic fluctuations generically invalidates the classical, deterministic mean-field picture. Already within mean-field theory, however, spatial constraints, modeling locally limited resources, lead to the emergence of a continuous active-to-absorbing state phase transition. Field-theoretic arguments, supported by Monte Carlo simulation results, indicate that this transition, which represents an extinction threshold for the predator population, is governed by the directed percolation universality class. In the active state, where predators and prey coexist, the classical center singularities with associated population cycles are replaced by either nodes or foci. In the vicinity of the stable nodes, the system is characterized by essentially stationary localized clusters of predators in a sea of prey. Near the stable foci, however, the stochastic lattice Lotka-Volterra system displays complex, correlated spatio-temporal patterns of competing activity fronts. Correspondingly, the population densities in our numerical simulations turn out to oscillate irregularly in time, with amplitudes that tend to zero in the thermodynamic limit. Yet in finite systems these oscillatory fluctuations are quite persistent, and their features are determined by the intrinsic interaction rates rather than the initial conditions. We emphasize the robustness of this scenario with respect to various model perturbations.Comment: 19 pages, 11 figures, 2-column revtex4 format. Minor modifications. Accepted in the Journal of Statistical Physics. Movies corresponding to Figures 2 and 3 are available at http://www.phys.vt.edu/~tauber/PredatorPrey/movies

    Disrupted seasonal biology impacts health, food security and ecosystems

    Get PDF
    The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research

    Subthreshold antiproton production in proton-carbon reactions

    Full text link
    Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-) production in proton-nucleus reactions are described at projectile energies between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus reaction as an incoherent sum over collisions of the projectile with a varying number of target nucleons. It samples complete events and allows thus for the simultaneous consideration of all particle species measured. The overall reproduction of the data is quite satisfactory. It is shown that the contributions from the interaction of the projectile with groups of several target nucleons are decisive for the description of subthreshold production. Since the collective features of subthreshold production become especially significant far below the threshold, the results are extrapolated down to COSY energies. It is concluded that an antiproton measurement at ANKE-COSY should be feasible, if the high background of other particles can be efficiently suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2: Modification of text due to demands of referee

    Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model

    Get PDF
    Food webs, networks of feeding relationships among organisms, provide fundamental insights into mechanisms that determine ecosystem stability and persistence. Despite long-standing interest in the compartmental structure of food webs, past network analyses of food webs have been constrained by a standard definition of compartments, or modules, that requires many links within compartments and few links between them. Empirical analyses have been further limited by low-resolution data for primary producers. In this paper, we present a Bayesian computational method for identifying group structure in food webs using a flexible definition of a group that can describe both functional roles and standard compartments. The Serengeti ecosystem provides an opportunity to examine structure in a newly compiled food web that includes species-level resolution among plants, allowing us to address whether groups in the food web correspond to tightly-connected compartments or functional groups, and whether network structure reflects spatial or trophic organization, or a combination of the two. We have compiled the major mammalian and plant components of the Serengeti food web from published literature, and we infer its group structure using our method. We find that network structure corresponds to spatially distinct plant groups coupled at higher trophic levels by groups of herbivores, which are in turn coupled by carnivore groups. Thus the group structure of the Serengeti web represents a mixture of trophic guild structure and spatial patterns, in contrast to the standard compartments typically identified in ecological networks. From data consisting only of nodes and links, the group structure that emerges supports recent ideas on spatial coupling and energy channels in ecosystems that have been proposed as important for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting
    • …
    corecore