2,548 research outputs found
Managing Risk of Bidding in Display Advertising
In this paper, we deal with the uncertainty of bidding for display
advertising. Similar to the financial market trading, real-time bidding (RTB)
based display advertising employs an auction mechanism to automate the
impression level media buying; and running a campaign is no different than an
investment of acquiring new customers in return for obtaining additional
converted sales. Thus, how to optimally bid on an ad impression to drive the
profit and return-on-investment becomes essential. However, the large
randomness of the user behaviors and the cost uncertainty caused by the auction
competition may result in a significant risk from the campaign performance
estimation. In this paper, we explicitly model the uncertainty of user
click-through rate estimation and auction competition to capture the risk. We
borrow an idea from finance and derive the value at risk for each ad display
opportunity. Our formulation results in two risk-aware bidding strategies that
penalize risky ad impressions and focus more on the ones with higher expected
return and lower risk. The empirical study on real-world data demonstrates the
effectiveness of our proposed risk-aware bidding strategies: yielding profit
gains of 15.4% in offline experiments and up to 17.5% in an online A/B test on
a commercial RTB platform over the widely applied bidding strategies
Exploring morphological generality in the Old World monkey postcranium using an ecomorphological framework
Nearly all primates are ecologically dependent on trees but they are nonetheless found in an enormous range of habitats, from highly xeric environments to dense rainforest. Most primates have a relatively ‘generalised’ skeleton, enabling locomotor flexibility and facilitating other crucial functions, such as manual foraging and grooming. In this paper we explore associations between habitat, locomotion and morphology in the forelimbs of cercopithecids (Old World monkeys), contextualising their skeletal ecomorphological patterns with those of other mammals, and complementing functional morphological analyses with phylogenetic comparative techniques. We investigate the ecomorphological signals present in the generalised primate postcranium, and how an ancestral arboreal ‘bauplan’ might be modified to incorporate terrestriality or exploit distinct arboreal substrates. Analysis of ecomorphological variation in guenons indicates that terrestrial Chlorocebus species retain core elements of a general guenon form, with modifications for terrestriality that vary by species. Adaptation to different modes of arboreality has also occurred in Cercopithecus. The considerable morphological similarity in the guenons sampled emphasises the importance of generality in the primate postcranium – much forelimb variation appears to have emerged stochastically, with a smaller number of traits having a strong functional signal. Analysis of a broader sample of cercopithecids and comparison with felids, suids and bovids indicates that although the cercopithecid humerus has functional morphological signals that enable specimens to be assigned with a reasonable degree of certainty to habitat groups, there is considerable overlap in the specimens assigned to each habitat group. This probably reflects ecological dependence on trees, even in predominantly terrestrial species, as well as the multiple functions of the forelimb and, in some cases, wide geographic distributions that promote intraspecific variation. The use of phylogenetic correction reduced the discriminatory power of the models, indicating that, like allometry, phylogeny contains important ecomorphological information, and should not necessarily be factored out of analyses
Statistics of Atmospheric Correlations
For a large class of quantum systems the statistical properties of their
spectrum show remarkable agreement with random matrix predictions. Recent
advances show that the scope of random matrix theory is much wider. In this
work, we show that the random matrix approach can be beneficially applied to a
completely different classical domain, namely, to the empirical correlation
matrices obtained from the analysis of the basic atmospheric parameters that
characterise the state of atmosphere. We show that the spectrum of atmospheric
correlation matrices satisfy the random matrix prescription. In particular, the
eigenmodes of the atmospheric empirical correlation matrices that have physical
significance are marked by deviations from the eigenvector distribution.Comment: 8 pages, 9 figs, revtex; To appear in Phys. Rev.
Noise Dressing of Financial Correlation Matrices
We show that results from the theory of random matrices are potentially of
great interest to understand the statistical structure of the empirical
correlation matrices appearing in the study of price fluctuations. The central
result of the present study is the remarkable agreement between the theoretical
prediction (based on the assumption that the correlation matrix is random) and
empirical data concerning the density of eigenvalues associated to the time
series of the different stocks of the S&P500 (or other major markets). In
particular the present study raises serious doubts on the blind use of
empirical correlation matrices for risk management.Comment: Latex (Revtex) 3 pp + 2 postscript figures (in-text
Applying the framework for culturally responsive teaching to explore the adaptations that teach first beginning teachers use to meet the needs of their pupils in school
Previous research has shown that beginning teachers are capable of adapting their practice to the needs of ethnically diverse pupils. This paper investigates the possibility that such teachers were developing their practice into what I have termed culturally adaptive teaching. A variety of methods were used to collect qualitative data that focused on the perspectives of teachers in schools across Yorkshire and Humberside, (UK) over the course of an academic year. The framework for culturally responsive teaching (CRT) was used as a lens through which to analyse the data collected. It enabled findings to emerge that took the framework beyond that of CRT, to one of culturally adaptive teaching. Teachers continually adapted their practice, in terms of cultural sensitivity, to better meet the needs of their pupils. If we can apply this framework and support beginning teachers to help them understand issues of cultural diversity in the classroom, we might be able to engender a real systematic change in teaching for the benefit of pupils
Phase Transitions and Oscillations in a Lattice Prey-Predator Model
A coarse grained description of a two-dimensional prey-predator system is
given in terms of a 3-state lattice model containing two control parameters:
the spreading rates of preys and predators. The properties of the model are
investigated by dynamical mean-field approximations and extensive numerical
simulations. It is shown that the stationary state phase diagram is divided
into two phases: a pure prey phase and a coexistence phase of preys and
predators in which temporal and spatial oscillations can be present. The
different type of phase transitions occuring at the boundary of the prey
absorbing phase, as well as the crossover phenomena occuring between the
oscillatory and non-oscillatory domains of the coexistence phase are studied.
The importance of finite size effects are discussed and scaling relations
between different quantities are established. Finally, physical arguments,
based on the spatial structure of the model, are given to explain the
underlying mechanism leading to oscillations.Comment: 11 pages, 13 figure
Phase Transitions and Spatio-Temporal Fluctuations in Stochastic Lattice Lotka-Volterra Models
We study the general properties of stochastic two-species models for
predator-prey competition and coexistence with Lotka-Volterra type interactions
defined on a -dimensional lattice. Introducing spatial degrees of freedom
and allowing for stochastic fluctuations generically invalidates the classical,
deterministic mean-field picture. Already within mean-field theory, however,
spatial constraints, modeling locally limited resources, lead to the emergence
of a continuous active-to-absorbing state phase transition. Field-theoretic
arguments, supported by Monte Carlo simulation results, indicate that this
transition, which represents an extinction threshold for the predator
population, is governed by the directed percolation universality class. In the
active state, where predators and prey coexist, the classical center
singularities with associated population cycles are replaced by either nodes or
foci. In the vicinity of the stable nodes, the system is characterized by
essentially stationary localized clusters of predators in a sea of prey. Near
the stable foci, however, the stochastic lattice Lotka-Volterra system displays
complex, correlated spatio-temporal patterns of competing activity fronts.
Correspondingly, the population densities in our numerical simulations turn out
to oscillate irregularly in time, with amplitudes that tend to zero in the
thermodynamic limit. Yet in finite systems these oscillatory fluctuations are
quite persistent, and their features are determined by the intrinsic
interaction rates rather than the initial conditions. We emphasize the
robustness of this scenario with respect to various model perturbations.Comment: 19 pages, 11 figures, 2-column revtex4 format. Minor modifications.
Accepted in the Journal of Statistical Physics. Movies corresponding to
Figures 2 and 3 are available at
http://www.phys.vt.edu/~tauber/PredatorPrey/movies
Disrupted seasonal biology impacts health, food security and ecosystems
The rhythm of life on earth is shaped by seasonal changes in the environment. Plants and animals show profound annual cycles in physiology, health, morphology, behaviour and demography in response to environmental cues. Seasonal biology impacts ecosystems and agriculture, with consequences for humans and biodiversity. Human populations show robust annual rhythms in health and well-being, and the birth month can have lasting effects that persist throughout life. This review emphasizes the need for a better understanding of seasonal biology against the backdrop of its rapidly progressing disruption through climate change, human lifestyles and other anthropogenic impact. Climate change is modifying annual rhythms to which numerous organisms have adapted, with potential consequences for industries relating to health, ecosystems and food security. Disconcertingly, human lifestyles under artificial conditions of eternal summer provide the most extreme example for disconnect from natural seasons, making humans vulnerable to increased morbidity and mortality. In this review, we introduce scenarios of seasonal disruption, highlight key aspects of seasonal biology and summarize from biomedical, anthropological, veterinary, agricultural and environmental perspectives the recent evidence for seasonal desynchronization between environmental factors and internal rhythms. Because annual rhythms are pervasive across biological systems, they provide a common framework for trans-disciplinary research
Subthreshold antiproton production in proton-carbon reactions
Data from KEK on subthreshold antiproton as well as on pi(+-) and K(+-)
production in proton-nucleus reactions are described at projectile energies
between 3.5 and 12.0 GeV. We use a model which considers a hadron-nucleus
reaction as an incoherent sum over collisions of the projectile with a varying
number of target nucleons. It samples complete events and allows thus for the
simultaneous consideration of all particle species measured. The overall
reproduction of the data is quite satisfactory. It is shown that the
contributions from the interaction of the projectile with groups of several
target nucleons are decisive for the description of subthreshold production.
Since the collective features of subthreshold production become especially
significant far below the threshold, the results are extrapolated down to COSY
energies. It is concluded that an antiproton measurement at ANKE-COSY should be
feasible, if the high background of other particles can be efficiently
suppressed.Comment: 15 pages, 5 figures, gzipped tar file, submitted to J. Phys. G v2:
Modification of text due to demands of referee
Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
Food webs, networks of feeding relationships among organisms, provide
fundamental insights into mechanisms that determine ecosystem stability and
persistence. Despite long-standing interest in the compartmental structure of
food webs, past network analyses of food webs have been constrained by a
standard definition of compartments, or modules, that requires many links
within compartments and few links between them. Empirical analyses have been
further limited by low-resolution data for primary producers. In this paper, we
present a Bayesian computational method for identifying group structure in food
webs using a flexible definition of a group that can describe both functional
roles and standard compartments. The Serengeti ecosystem provides an
opportunity to examine structure in a newly compiled food web that includes
species-level resolution among plants, allowing us to address whether groups in
the food web correspond to tightly-connected compartments or functional groups,
and whether network structure reflects spatial or trophic organization, or a
combination of the two. We have compiled the major mammalian and plant
components of the Serengeti food web from published literature, and we infer
its group structure using our method. We find that network structure
corresponds to spatially distinct plant groups coupled at higher trophic levels
by groups of herbivores, which are in turn coupled by carnivore groups. Thus
the group structure of the Serengeti web represents a mixture of trophic guild
structure and spatial patterns, in contrast to the standard compartments
typically identified in ecological networks. From data consisting only of nodes
and links, the group structure that emerges supports recent ideas on spatial
coupling and energy channels in ecosystems that have been proposed as important
for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting
- …