3,511 research outputs found

    Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration

    Get PDF
    Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. In an expository biochemical example we show how a reversible, mass balanced perpetual reaction, with thermodynamically infeasible kinetic parameters, can be used to perpetually force a kinetic model of anaerobic glycolysis in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models.Comment: 11 pages, 2 figures (v2 is now placed in proper context of the excellent 1962 paper by James Wei entitled "Axiomatic treatment of chemical reaction systems". In addition, section 4, on "Utility of steady state existence theorem" has been expanded.

    MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

    Get PDF
    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Our previous work revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. Through this work, which consists of a protocol, a toolbox, and tutorials of two use cases, we make our methods available to the broader scientific community. The protocol describes, in a step-wise manner, the workflow of data integration and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, this protocol constitutes a comprehensive guide to the intra-model analysis of extracellular metabolomic data and a resource offering a broad set of computational analysis tools for a wide biomedical and non-biomedical research community

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    A Study of Sequence Distribution of a Painted Globule as a Model for Proteins with Good Folding Properties

    Get PDF
    In this paper we present a method to study the folding structure of a simple model consisting of two kinds of monomers, hydrophobic and hydrophilic. This method has three main steps: an efficient simulation method to bring an open sequence of homopolymer to a folded state, the application of a painting method called regular hull to the folded globule and the refolding process of the obtained copolymer sequence. This study allows us to suggest a theoretical function of disorder distribution for copolymer sequences that give rise to a compacted and well micro-phase separated globule

    A Study of Sequence Distribution of a Painted Globule as a Model for Proteins with Good Folding Properties

    Get PDF
    In this paper we present a method to study the folding structure of a simple model consisting of two kinds of monomers, hydrophobic and hydrophilic. This method has three main steps: an efficient simulation method to bring an open sequence of homopolymer to a folded state, the application of a painting method called regular hull to the folded globule and the refolding process of the obtained copolymer sequence. This study allows us to suggest a theoretical function of disorder distribution for copolymer sequences that give rise to a compacted and well micro-phase separated globule

    The difference in patterns of motor and cognitive function in chronic fatigue syndrome and severe depressive illness

    Get PDF
    Background. Chronic fatigue syndrome (CFS) and major depressive disorder (MDD) share many symptoms and aetiological factors but may have different neurobiological underpinnings. We wished to determine the profile of the biological variables disturbed in CFS and MDD, and identify any critical factors that differentiate the disorders. Methods. Thirty patients with CFS, 20 with MDD and 15 healthy controls – matched group-wise for age and sex – were recruited. Subjects were given a detailed battery of motor and cognitive tests, including measures of psychomotor speed, memory and maximal voluntary muscle contraction in both the morning and evening that were balanced to avoid order effects. Results. CFS patients generally performed worse on cognitive tests than healthy controls, but better than patients with MDD. Both patient groups had markedly impaired motor function compared with healthy controls. MDD subjects showed a significantly greater diurnal improvement in maximal voluntary contraction than healthy controls. Conclusions. Patients with CFS and MDD show similarly substantial motor impairment, but cognitive deficits are generally more marked in MDD. Diurnal changes in some functions in MDD may differentiate the disorder from CFS
    • …
    corecore