2,734 research outputs found

    Results of ASTM round robin testing for mode 1 interlaminar fracture toughness of composite materials

    Get PDF
    The results are summarized of several interlaboratory 'round robin' test programs for measuring the mode 1 interlaminar fracture toughness of advanced fiber reinforced composite materials. Double Cantilever Beam (DCB) tests were conducted by participants in ASTM committee D30 on High Modulus Fibers and their Composites and by representatives of the European Group on Fracture (EGF) and the Japanese Industrial Standards Group (JIS). DCB tests were performed on three AS4 carbon fiber reinforced composite materials: AS4/3501-6 with a brittle epoxy matrix; AS4/BP907 with a tough epoxy matrix; and AS4/PEEK with a tough thermoplastic matrix. Difficulties encountered in manufacturing panels, as well as conducting the tests are discussed. Critical issues that developed during the course of the testing are highlighted. Results of the round robin testing used to determine the precision of the ASTM DCB test standard are summarized

    Surface-sampled simulations of turbulent flow at high Reynolds number

    Full text link
    A new approach to turbulence simulation, based on a combination of large-eddy simulation (LES) for the whole flow and an array of non-space-filling quasi-direct numerical simulations (QDNS), which sample the response of near-wall turbulence to large-scale forcing, is proposed and evaluated. The technique overcomes some of the cost limitations of turbulence simulation, since the main flow is treated with a coarse-grid LES, with the equivalent of wall functions supplied by the near-wall sampled QDNS. Two cases are tested, at friction Reynolds number Reτ_\tau=4200 and 20,000. The total grid node count for the first case is less than half a million and less than two million for the second case, with the calculations only requiring a desktop computer. A good agreement with published DNS is found at Reτ_\tau=4200, both in terms of the mean velocity profile and the streamwise velocity fluctuation statistics, which correctly show a substantial increase in near-wall turbulence levels due to a modulation of near-wall streaks by large-scale structures. The trend continues at Reτ_\tau=20,000, in agreement with experiment, which represents one of the major achievements of the new approach. A number of detailed aspects of the model, including numerical resolution, LES-QDNS coupling strategy and sub-grid model are explored. A low level of grid sensitivity is demonstrated for both the QDNS and LES aspects. Since the method does not assume a law of the wall, it can in principle be applied to flows that are out of equilibrium.Comment: Author accepted version. Accepted for publication in the International Journal for Numerical Methods in Fluids on 26 April 201

    Quantitative Flow Field Imaging about a Hydrophobic Sphere Impacting on a Free Surface

    Full text link
    This fluid dynamics video shows the impact of a hydrophobic sphere impacting a water surface. The sphere has a mass ratio of m* = 1.15, a wetting angle of 110 degrees, a diameter of 9.5 mm, and impacts the surface with a Froude number of Fr = 9.2. The first sequence shows an impact of a sphere on the free surface illustrating the formation of the splash crown and air cavity. The cavity grows both in the axial and radial direction until it eventually collapses at a point roughly half of the distance from the free surface to the sphere, which is known as the pinch-off point. The second set of videos shows a sphere impacting the free surface under the same conditions using Particle Image Velocimetry (PIV) to quantify the flow field. A laser sheet illuminates the mid-plane of the sphere, and the fluid is seeded with particles whose motion is captured by a high-speed video camera. Velocity fields are then calculated from the images. The video sequences from left to right depict the radial velocity, the axial velocity, and the vorticity respectively in the flow field. The color bar on the far left indicates the magnitude of the velocity and vorticity. All videos were taken at 2610 fps and the PIV data was processed using a 16 x 16 window with a 50% overlap.Comment: American Physical Society Division of Fluid Dynamics 2008 Annual Meeting Replaced previous version because abstract had LaTex markup and was too long, missing periods on middle initial of first two name

    Use of Phosphoric Acid and Furfuryl Alcohol for Soil Stabilization

    Get PDF
    This paper presents results of an investigation of the effects of phosphoric acid and furfuryl alcohol on the resistance and strengths of a clayey soil and of a sandy soil. Results indicate that greater water resistance and higher strengths can be obtained with both soils by using the admixtures. For the sandy soil, a certain optimum amount of phosphoric acid gives the maximum strengths for all furfuryl alcohol contents. The stabilization mechanism for the clayey soil is thought to be a combination of the formation of phosphoric gels and of a resin product of a furfuryl alcohol polymerization reaction. The mechanism for the sandy soil is the formation of the polymerization resin product
    • …
    corecore