4,644 research outputs found

    Combining remotely sensed and other measurements for hydrologic areal averages

    Get PDF
    A method is described for combining measurements of hydrologic variables of various sampling geometries and measurement accuracies to produce an estimated mean areal value over a watershed and a measure of the accuracy of the mean areal value. The method provides a means to integrate measurements from conventional hydrological networks and remote sensing. The resulting areal averages can be used to enhance a wide variety of hydrological applications including basin modeling. The correlation area method assigns weights to each available measurement (point, line, or areal) based on the area of the basin most accurately represented by the measurement. The statistical characteristics of the accuracy of the various measurement technologies and of the random fields of the hydrologic variables used in the study (water equivalent of the snow cover and soil moisture) required to implement the method are discussed

    Strategies for using remotely sensed data in hydrologic models

    Get PDF
    Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established

    The COINS Sample - VLBA Identifications of Compact Symmetric Objects

    Get PDF
    We present results of multifrequency polarimetric VLBA observations of 34 compact radio sources. The observations are part of a large survey undertaken to identify CSOs Observed in the Northern Sky (COINS). Compact Symmetric Objects (CSOs) are of particular interest in the study of the physics and evolution of active galaxies. Based on VLBI continuum surveys of ~2000 compact radio sources, we have defined a sample of 52 CSOs and CSO candidates. In this paper, we identify 18 previously known CSOs, and introduce 33 new CSO candidates. We present continuum images at several frequencies and, where possible, images of the polarized flux density and spectral index distributions for the 33 new candidates and one previously known but unconfirmed source. We find evidence to support the inclusion of 10 of these condidates into the class of CSOs. Thirteen candidates, including the previously unconfirmed source, have been ruled out. Eleven sources require further investigation. The addition of the 10 new confirmed CSOs increases the size of this class of objects by 50%.Comment: 24 pages, incl 8 figures. Accepted for publication in ApJ. Figure quality degraded in the interests of space, full gzipped PS version also available at http://www.ee.nmt.edu/~apeck/papers

    Simulating COVID-19 In A University Environment

    Get PDF
    Residential colleges and universities face unique challenges in providing in-person instruction during the COVID-19 pandemic. Administrators are currently faced with decisions about whether to open during the pandemic and what modifications of their normal operations might be necessary to protect students, faculty and staff. There is little information, however, on what measures are likely to be most effective and whether existing interventions could contain the spread of an outbreak on campus. We develop a full-scale stochastic agent-based model to determine whether in-person instruction could safely continue during the pandemic and evaluate the necessity of various interventions. Simulation results indicate that large scale randomized testing, contact-tracing, and quarantining are important components of a successful strategy for containing campus outbreaks. High test specificity is critical for keeping the size of the quarantine population manageable. Moving the largest classes online is also crucial for controlling both the size of outbreaks and the number of students in quarantine. Increased residential exposure can significantly impact the size of an outbreak, but it is likely more important to control non-residential social exposure among students. Finally, necessarily high quarantine rates even in controlled outbreaks imply significant absenteeism, indicating a need to plan for remote instruction of quarantined students

    Review of the radiographic modalities used during dental implant therapy - A narrative

    Get PDF
    The introduction of digital x-ray receivers which replaced conventional films was a significant radiographic development that is commonly used in daily dental practice. Dental implant therapy (DIT) is a sought after dental therapeutic intervention and dental radiography is an essential component contributing to the success of treatment. Dental radiographs taken in daily practice are generally conventional two-dimensional images and/or three-dimensional images. Ideally, the choice of radiographic technique should be determined after a thorough clinical examination and comprehensive consideration of the advantages, indications, and drawbacks. Digital three-dimensional modalities that have emerged over the last decade have been incorporated into DIT with the assumption that treatment outcomes will be improved. These modalities are constantly being reassessed and improved but there is a paucity of published information regarding the assessment of variables such as dosages and dimensional accuracy, suggesting that further research in these matters is necessary. This is crucial in order to obtain evidence-based information that may influence future radiographic practices. In this narrative, the authors present the most commonly used dental radiographic modalities currently used in DIT

    New Limits on Local Lorentz Invariance in Mercury and Cesium

    Full text link
    We report new bounds on Local Lorentz Invariance (LLI) violation in Cs and Hg. The limits are obtained through the observation of the the spin- precession frequencies of 199Hg and 133Cs atoms in their ground states as a function of the orientation of an applied magnetic field with respect to the fixed stars. We measure the amplitudes of the dipole couplings to a preferred direction in the equatorial plane to be 19(11) nHz for Hg and 9(5) microHz for Cs. The upper bounds established here improve upon previous bounds by about a factor of four. The improvement is primarily due to mounting the apparatus on a rotating table. New bounds are established on several terms in the standard model extension including the first bounds on the spin-couplings of the neutron and proton to the z direction, <7e-30 GeV and <7e-29 GeV, respectively.Comment: 17 pages, 6 figure

    HI Observations of the Supermassive Binary Black Hole System in 0402+379

    Full text link
    We have recently discovered a supermassive binary black hole system with a projected separation between the two black holes of 7.3 parsecs in the radio galaxy 0402+379. This is the most compact supermassive binary black hole pair yet imaged by more than two orders of magnitude. We present Global VLBI observations at 1.3464 GHz of this radio galaxy, taken to improve the quality of the HI data. Two absorption lines are found toward the southern jet of the source, one redshifted by 370 +/- 10 km/s and the other blueshifted by 700 +/- 10 km/s with respect to the systemic velocity of the source, which, along with the results obtained for the opacity distribution over the source, suggests the presence of two mass clumps rotating around the central region of the source. We propose a model consisting of a geometrically thick disk, of which we only see a couple of clumps, that reproduces the velocities measured from the HI absorption profiles. These clumps rotate in circular Keplerian orbits around an axis that crosses one of the supermassive black holes of the binary system in 0402+379. We find an upper limit for the inclination angle of the twin jets of the source to the line of sight of 66 degrees, which, according to the proposed model, implies a lower limit on the central mass of ~7 x 10^8 Msun and a lower limit for the scale height of the thick disk of ~12 pc .Comment: 20 pages, 7 figures. Accepted on the Astrophysical Journa

    Liquid Phase Electrochemistry at Ultralow Temperatures

    Get PDF
    Fluid electrolyte solutions based on mixtures of butyronitrile (PrCN) and ethyl chloride (EtCl) with or as electrolyte freeze below −180°C and provide excellent media for cryogenic electrochemical experiments. A 1:2 mixture of PrCN and EtCl exhibits the best combination of freezing point and ionic conductivity for ultralow temperature electrochemistry. Diffusion coefficients for bis(pentamethylcyclopentadienyl) iron are measurable by potential step chronoamperometry down to −160°C using a conventionally sized electrode, but the resistivity of the solvent mixture is such that potential sweep voltammetry benefits from the use of microdisk (10 and 25 μm diam Pt) or microband (0.2 μm wide Au) electrodes. Voltammetry at a chemically modified electrode down to −170°C is presented for the case of thin films

    Dental implant imaging: What do South African dentists and dental specialists prefer?

    Get PDF
    To document the types of imaging modalities that are commonly prescribed during dental implant therapy in South Africa. The radiographic preferences were obtained from practitioners via an electronic survey that was disseminated during local dental conferences, electronic channels (e.g., email lists) of multiple dental schools and local dental scientific societies, and personal interviews. The survey consisted of multiple-choice questions which were designed to investigate the most common radiographic prescriptions during various treatment phases of implant therapy. The responses of one hundred and forty-two participants (General practitioners and dental specialists) practising in different South African provinces were collected and assessed. Principally, panoramic radiographs combined with cone beam computed tomography (PAN + CBCT) followed by CBCT, as a single examination (ASE), were the most preferable modalities during the implant planning phase (39% and 29%, respectively). During and directly after the surgery, periapical radiographs (ASE) were the most preferred (87% and 65%, respectively). The most widely preferred radiographic examination during the planning of implants was panoramic radiographs combined with CBCT. Periapical radiographs (ASE) were favoured during, directly after the treatment, and during the follow-up of asymptomatic patients by the majority of participants. However, CBCT (ASE) was preferred in the follow up of symptomatic patients. Factors related to extra anatomical information and superior dimensional accuracy provided by three-dimensional volumes (e.g., CBCT volumes), were the most indicated influencing factors on the radiographic prescriptions during implant planning
    • …
    corecore