7,461 research outputs found
Microstructural and strength stability of CVD SiC fibers in argon environment
The room temperature tensile strength and microstructure of three types of commercially available chemically vapor deposited silicon carbide fibers were measured after 1, 10, and 100 hour heat treatments under argon pressures of 0.1 to 310 MPa at temperatures to 2100 C. Two types of fiber had carbon-rich surface coatings and the other contained no coating. All three fiber types showed strength degradation beyond 1400 C. Time and temperature of exposure had greater influence on strength degradation than argon pressure. Recrystallization and growth of near stoichiometric SiC grains appears to be the dominant mechanism for the strength degradation
Recommended from our members
Early time dynamics of laser-ablated silicon using ultrafast grazing incidence X-ray scattering
Controlling the morphology of laser-derived nanomaterials is dependent on developing a better understanding of the particle nucleation dynamics in the ablation plume. Here, we utilize the femtosecond-length pulses from an x-ray free electron laser to perform time-resolved grazing incidence x-ray scattering measurements on a laser-produced silicon plasma plume. At 20 ps we observe a dramatic increase in the scattering amplitude at small scattering vectors, which we attribute to incipient formation of liquid silicon droplets. These results demonstrate the utility of XFELs as a tool for characterizing the formation dynamics of nanomaterials in laser-produced plasma plumes on ultrafast timescales
On the construction of variant supergravities in D=11, D=10
We construct with a geometric procedure the supersymmetry transformation laws
and Lagrangian for all the ``variant'' D=11 and D=10 Type IIA supergravities.
We identify into our classification the D=11 and D=10 Type IIA ``variant''
theories first introduced by Hull performing T-duality transformation on both
spacelike and timelike circles. We find in addition a set of D=10 Type IIA
``variant'' supergravities that can not be obtained trivially from eleven
dimensions compactifying on a circle.Comment: 21 pages, Late
A Cosmic Microwave Background Radiation Polarimeter Using Superconducting Bearings
Measurements of the polarization of the cosmic microwave background (CMB)
radiation are expected to significantly increase our understanding of the early
universe. We present a design for a CMB polarimeter in which a cryogenically
cooled half wave plate rotates by means of a high-temperature superconducting
(HTS) bearing. The design is optimized for implementation in MAXIPOL, a
balloon-borne CMB polarimeter. A prototype bearing, consisting of commercially
available ring-shaped permanent magnet and an array of YBCO bulk HTS material,
has been constructed. We measured the coefficient of friction as a function of
several parameters including temperature between 15 and 80 K, rotation
frequency between 0.3 and 3.5 Hz, levitation distance between 6 and 10 mm, and
ambient pressure between 10^{-7} and 1 torr. The low rotational drag of the HTS
bearing allows rotations for long periods of time with minimal input power and
negligible wear and tear thus making this technology suitable for a future
satellite mission.Comment: 6 pages, IEEE-Transactions of Applied Superconductivity, 2003, Vol.
13, in pres
D=6, N=2, F(4)-Supergravity with supersymmetric de Sitter Background
We show that there exists a supersymmetric de Sitter background for the D=6,
N=2, F(4) supergravity preserving the compact R-symmetry and gauging with
respect to the conventional Anti de Sitter version of the theory. We construct
the gauged matter coupled F(4) de Sitter supergravity explicitly and show that
it contains ghosts in the vector sector.Comment: 19 pages, Late
Consistent reductions of IIB*/M* theory and de Sitter supergravity
We construct consistent non-linear Kaluza Klein reduction ansatze for a
subset of fields arising from the reduction of IIB* and M* theory on dS_5 x H^5
and dS_4 x AdS_7, respectively. These reductions yield four and
five-dimensional de Sitter supergravities, albeit with wrong sign kinetic
terms. We also demonstrate that the ansatze may be used to lift multi-centered
de Sitter black hole solutions to ten and eleven dimensions. The lifted dS_5
black holes correspond to rotating E4-branes of IIB* theory.Comment: 27 pages, late
Cation composition effects on oxide conductivity in the Zr_2Y_2O_7-Y_3NbO_7 system
Realistic, first-principles-based interatomic potentials have been used in
molecular dynamics simulations to study the effect of cation composition on the
ionic conductivity in the Zr2Y2O7-Y3NbO7 system and to link the dynamical
properties to the degree of lattice disorder. Across the composition range,
this system retains a disordered fluorite crystal structure and the vacancy
concentration is constant. The observed trends of decreasing conductivity and
increasing disorder with increasing Nb5+ content were reproduced in simulations
with the cations randomly assigned to positions on the cation sublattice. The
trends were traced to the influences of the cation charges and relative sizes
and their effect on vacancy ordering by carrying out additional calculations in
which, for example, the charges of the cations were equalised. The simulations
did not, however, reproduce all the observed properties, particularly for
Y3NbO7. Its conductivity was significantly overestimated and prominent diffuse
scattering features observed in small area electron diffraction studies were
not always reproduced. Consideration of these deficiencies led to a preliminary
attempt to characterise the consequence of partially ordering the cations on
their lattice, which significantly affects the propensity for vacancy ordering.
The extent and consequences of cation ordering seem to be much less pronounced
on the Zr2Y2O7 side of the composition range.Comment: 22 pages, 8 figures, submitted to Journal of Physics: Condensed
Matte
Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites
Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation
Untangling the Conceptual Isssues Raised in Reydon and Scholz’s Critique of Organizational Ecology and Darwinian Populations
Reydon and Scholz raise doubts about the Darwinian status of organizational ecology by arguing that Darwinian principles are not applicable to organizational populations. Although their critique of organizational ecology’s typological essentialism is correct, they go on to reject the Darwinian status of organizational populations. This paper claims that the distinction between replicators and interactors, raised in modern philosophy of biology but not discussed by Reydon and Scholz, points the way forward for organizational ecologists. It is possible to conceptualise evolving Darwinian populations providing the inheritance mechanism is appropriately specified. By this approach, adaptation and selection are no longer dichotomised, and the evolutionary significance of knowledge transmission is highlightedPeer reviewe
Harmonic superpositions of non-extremal p-branes
The plot of allowed p and D values for p-brane solitons in D-dimensional
supergravity is the same whether the solitons are extremal or non-extremal. One
of the useful tools for relating different points on the plot is vertical
dimensional reduction, which is possible if periodic arrays of p-brane solitons
can be constructed. This is straightforward for extremal p-branes, since the
no-force condition allows arbitrary multi-centre solutions to be constructed in
terms of a general harmonic function on the transverse space. This has also
been shown to be possible in the special case of non-extremal black holes in
D=4 arrayed along an axis. In this paper, we extend previous results to include
multi-scalar black holes, and dyonic black holes. We also consider their
oxidation to higher dimensions, and we discuss general procedures for
constructing the solutions, and studying their symmetries.Comment: Latex, 23 page
- …