65 research outputs found

    Dominant B-cell epitopes from cancer/stem cell antigen SOC2 recognized by serum samples from cancer patients

    Get PDF
    Cataloged from PDF version of article.Human sex determining region Y-box 2 (SOX2) is an important transcriptional factor involved in the pluripotency and stemness of human embryonic stem cells. SOX2 plays important roles in maintaining cancer stem cell activities of melanoma and cancers of the brain, prostate, breast, and lung. SOX2 is also a lineage survival oncogene for squamous cell carcinoma of the lung and esophagus. Spontaneous cellular and humoral immune responses against SOX2 present in cancer patients classify it as a tumor-associated antigen (TAA) shared by lung cancer, glioblastoma, and prostate cancer among others. In this study, B-cell epitopes were predicted using computer-assisted algorithms. Synthetic peptides based on the prediction were screened for recognition by serum samples from cancer patients using ELISA. Two dominant B-cell epitopes, SOX2:52-87 and SOX2:98-124 were identified. Prostate cancer, glioblastoma and lung cancer serum samples that recognized the above SOX2 epitopes also recognized the full-length protein based on Western blot. These B-cell epitopes may be used in assessing humoral immune responses against SOX2 in cancer immunotherapy and stem cell-related transplantation

    Cancer-testis gene expression is associated with the methylenetetrahydrofolate reductase 677 C>T polymorphism in non-small cell lung carcinoma

    Get PDF
    Background: Tumor-specific, coordinate expression of cancer-testis (CT) genes, mapping to the X chromosome, is observed in more than 60% of non-small cell lung cancer (NSCLC) patients. Although CT gene expression has been unequivocally related to DNA demethylation of promoter regions, the underlying mechanism leading to loss of promoter methylation remains elusive. Polymorphisms of enzymes within the 1-carbon pathway have been shown to affect S-adenosyl methionine (SAM) production, which is the sole methyl donor in the cell. Allelic variants of several enzymes within this pathway have been associated with altered SAM levels either directly, or indirectly as reflected by altered levels of SAH and Homocysteine levels, and altered levels of DNA methylation. We, therefore, asked whether the five most commonly occurring polymorphisms in four of the enzymes in the 1-carbon pathway associated with CT gene expression status in patients with NSCLC.Publisher's Versio

    Colon cancer associated transcript-1: A novel RNA expressed in malignant and pre-malignant human tissues

    Get PDF
    Early detection of colorectal cancer (CRC) is currently based on fecal occult blood testing (FOBT) and colonoscopy, both which can significantly reduce CRC-related mortality. However, FOBT has low-sensitivity and specificity, whereas colonoscopy is labor- and cost-intensive. Therefore, the discovery of novel biomarkers that can be used for improved CRC screening, diagnosis, staging and as targets for novel therapies is of utmost importance. To identify novel CRC biomarkers we utilized representational difference analysis (RDA) and characterized a colon cancer associated transcript (CCAT1), demonstrating consistently strong expression in adenocarcinoma of the colon, while being largely undetectable in normal human tissues (p < 000.1). CCAT1 levels in CRC are on average 235-fold higher than those found in normal mucosa. Importantly, CCAT1 is strongly expressed in tissues representing the early phase of tumorigenesis: in adenomatous polyps and in tumor-proximal colonic epithelium, as well as in later stages of the disease (liver metastasis, for example). In CRC-associated lymph nodes, CCAT1 overexpression is detectable in all H&E positive, and 40.0% of H&E and immunohistochemistry negative lymph nodes, suggesting very high sensitivity. CCAT1 is also overexpressed in 40.0% of peripheral blood samples of patients with CRC but not in healthy controls. CCAT1 is therefore a highly specific and readily detectable marker for CRC and tumor-associated tissues. Copyright Β© 2011 UICC

    MAGE I Transcription Factors Regulate KAP1 and KRAB Domain Zinc Finger Transcription Factor Mediated Gene Repression

    Get PDF
    Class I MAGE proteins (MAGE I) are normally expressed only in developing germ cells but are aberrantly expressed in many cancers. They have been shown to promote tumor survival, aggressive growth, and chemoresistance but the underlying mechanisms and MAGE I functions have not been fully elucidated. KRAB domain zinc finger transcription factors (KZNFs) are the largest group of vertebrate transcription factors and regulate neoplastic transformation, tumor suppression, cellular proliferation, and apoptosis. KZNFs bind the KAP1 protein and direct KAP1 to specific DNA sequences where it suppresses gene expression by inducing localized heterochromatin characterized by histone 3 lysine 9 trimethylation (H3me3K9). Discovery that MAGE I proteins also bind to KAP1 prompted us to investigate whether MAGE I can affect KZNF and KAP1 mediated gene regulation. We found that expression of MAGE I proteins, MAGE-A3 or MAGE-C2, relieved repression of a reporter gene by ZNF382, a KZNF with tumor suppressor activity. ChIP of MAGE I (-) HEK293T cells showed KAP1 and H3me3K9 are normally bound to the ID1 gene, a target of ZNF382, but that binding is greatly reduced in the presence of MAGE I proteins. MAGE I expression relieved KAP1 mediated ID1 repression, causing increased expression of ID1 mRNA and ID1 chromatin relaxation characterized by loss of H3me3K9. MAGE I binding to KAP1 also induced ZNF382 poly-ubiquitination and degradation, consistent with loss of ZNF382 leading to decreased KAP1 binding to ID1. In contrast, MAGE I expression caused increased KAP1 binding to Ki67, another KAP1 target gene, with increased H3me3K9 and decreased Ki67 mRNA expression. Since KZNFs are required to direct KAP1 to specific genes, these results show that MAGE I proteins can differentially regulate members of the KZNF family and KAP1 mediated gene repression

    MAGE-C2/CT10 Protein Expression Is an Independent Predictor of Recurrence in Prostate Cancer

    Get PDF
    The cancer-testis (CT) family of antigens is expressed in a variety of malignant neoplasms. In most cases, no CT antigen is found in normal tissues, except in testis, making them ideal targets for cancer immunotherapy. A comprehensive analysis of CT antigen expression has not yet been reported in prostate cancer. MAGE-C2/CT-10 is a novel CT antigen. The objective of this study was to analyze extent and prognostic significance of MAGE-C2/CT10 protein expression in prostate cancer. 348 prostate carcinomas from consecutive radical prostatectomies, 29 castration-refractory prostate cancer, 46 metastases, and 45 benign hyperplasias were immunohistochemically analyzed for MAGE-C2/CT10 expression using tissue microarrays. Nuclear MAGE-C2/CT10 expression was identified in only 3.3% primary prostate carcinomas. MAGE-C2/CT10 protein expression was significantly more frequent in metastatic (16.3% positivity) and castration-resistant prostate cancer (17% positivity; p<0.001). Nuclear MAGE-C2/CT10 expression was identified as predictor of biochemical recurrence after radical prostatectomy (pβ€Š=β€Š0.015), which was independent of preoperative PSA, Gleason score, tumor stage, and surgical margin status in multivariate analysis (p<0.05). MAGE-C2/CT10 expression in prostate cancer correlates with the degree of malignancy and indicates a higher risk for biochemical recurrence after radical prostatectomy. Further, the results suggest MAGE-C2/CT10 as a potential target for adjuvant and palliative immunotherapy in patients with prostate cancer

    Proteome Serological Determination of Tumor-Associated Antigens in Melanoma

    Get PDF
    Proteome serology may complement expression library-based approaches as strategy utilizing the patients' immune responses for the identification pathogenesis factors and potential targets for therapy and markers for diagnosis. Melanoma is a relatively immunogenic tumor and antigens recognized by melanoma-specific T cells have been extensively studied. The specificities of antibody responses to this malignancy have been analyzed to some extent by molecular genetic but not proteomics approaches. We screened sera of 94 melanoma patients for anti-melanoma reactivity and detected seropositivity in two-thirds of the patients with 2–6 antigens per case detected by 1D and an average of 2.3 per case by 2D Western blot analysis. For identification, antigen spots in Western blots were aligned with proteins in 2-DE and analyzed by mass spectrometry. 18 antigens were identified, 17 of which for the first time for melanoma. One of these antigens, galectin-3, has been related to various oncogenic processes including metastasis formation and invasiveness. Similarly, enolase has been found deregulated in different cancers. With at least 2 of 18 identified proteins implicated in oncogenic processes, the work confirms the potential of proteome-based antigen discovery to identify pathologically relevant proteins

    Adjuvant Autologous Melanoma Vaccine for Macroscopic Stage III Disease: Survival, Biomarkers, and Improved Response to CTLA-4 Blockade

    Get PDF
    Background. There is not yet an agreed adjuvant treatment for melanoma patients with American Joint Committee on Cancer stages III B and C. We report administration of an autologous melanoma vaccine to prevent disease recurrence. Patients and Methods. 126 patients received eight doses of irradiated autologous melanoma cells conjugated to dinitrophenyl and mixed with BCG. Delayed type hypersensitivity (DTH) response to unmodified melanoma cells was determined on the vaccine days 5 and 8. Gene expression analysis was performed on 35 tumors from patients with good or poor survival. Results. Median overall survival was 88 months with a 5-year survival of 54%. Patients attaining a strong DTH response had a significantly better (p = 0.0001) 5-year overall survival of 75% compared with 44% in patients without a strong response. Gene expression array linked a 50-gene signature to prognosis, including a cluster of four cancer testis antigens: CTAG2 (NY-ESO-2), MAGEA1, SSX1, and SSX4. Thirty-five patients, who received an autologous vaccine, followed by ipilimumab for progressive disease, had a significantly improved 3-year survival of 46% compared with 19% in nonvaccinated patients treated with ipilimumab alone (p = 0.007). Conclusion. Improved survival in patients attaining a strong DTH and increased response rate with subsequent ipilimumab suggests that the autologous vaccine confers protective immunity. Γ―ΒΏΒ½ 2016 Michal Lotem et al

    Evidence That SOX2 Overexpression Is Oncogenic in the Lung

    Get PDF
    BACKGROUND: SOX2 (Sry-box 2) is required to maintain a variety of stem cells, is overexpressed in some solid tumors, and is expressed in epithelial cells of the lung. METHODOLOGY/PRINCIPAL FINDINGS: We show that SOX2 is overexpressed in human squamous cell lung tumors and some adenocarcinomas. We have generated mouse models in which Sox2 is upregulated in epithelial cells of the lung during development and in the adult. In both cases, overexpression leads to extensive hyperplasia. In the terminal bronchioles, a trachea-like pseudostratified epithelium develops with p63-positive cells underlying columnar cells. Over 12-34 weeks, about half of the mice expressing the highest levels of Sox2 develop carcinoma. These tumors resemble adenocarcinoma but express the squamous marker, Trp63 (p63). CONCLUSIONS: These findings demonstrate that Sox2 overexpression both induces a proximal phenotype in the distal airways/alveoli and leads to cancer
    • …
    corecore