9,453 research outputs found

    The 5-kW arcjet power electronics

    Get PDF
    The initial design and evaluation of a 5 kW arcjet power electronics breadboard which as been integrated with a modified 1 kW design laboratory arcjet is presented. A single stage, 5 kW full bridge, pulse width modulated (PWM), power converter was developed which was phase shift regulated. The converter used metal oxide semiconductor field effect transistor (MOSFET) power switches and incorporated current mode control and an integral arcjet pulse ignition circuit. The unoptimized power efficiency was 93.5 and 93.9 percent at 5 kW and 50A output at input voltages of 130 and 150V, respectively. Line and load current regulation at 50A output was within one percent. The converter provided up to 6.6 kW to the arcjet with simulated ammonia used as a propellant

    Influence of peptidylarginine deiminase type 4 genotype and shared epitope on clinical characteristics and autoantibody profile of rheumatoid arthritis.

    Get PDF
    Background: Recent evidence suggests that distinction of subsets of rheumatoid arthritis (RA) depending on anticyclic citrullinated peptide antibody (anti-CCP) status may be helpful in distinguishing distinct aetiopathologies and in predicting the course of disease. HLA-DRB1 shared epitope (SE) and peptidylarginine deiminase type 4 (PADI4) genotype, both of which have been implicated in anti-CCP generation, are assumed to be associated with RA. Objectives: To elucidate whether PADI4 affects the clinical characteristics of RA, and whether it would modulate the effect of anti-CCPs on clinical course. The combined effect of SE and PADI4 on autoantibody profile was also analysed. Methods: 373 patients with RA were studied. SE, padi4_94C.T, rheumatoid factor, anti-CCPs and antinuclear antibodies (ANAs) were determined. Disease severity was characterised by cumulative therapy intensity classified into ordinal categories (CTI-1 to CTI-3) and by Steinbrocker score. Results: CTI was significantly associated with disease duration, erosive disease, disease activity score (DAS) 28 and anti-CCPs. The association of anti-CCPs with CTI was considerably influenced by padi4_94C.T genotype (C/C: ORadj=0.93, padj=0.92; C/T: ORadj=2.92, padj=0.093; T/T: ORadj=15.3, padj=0.002). Carriage of padi4_94T exhibited a significant trend towards higher Steinbrocker scores in univariate and multivariate analyses. An association of padi4_94C.T with ANAs was observed, with noteworthy differences depending on SE status (SE2: ORadj=6.20, padj,0.04; SE+: ORadj=0.36, padj=0.02) and significant heterogeneity between the two SE strata (p=0.006). Conclusions: PADI4 genotype in combination with anti- CCPs and SE modulates clinical and serological characteristics of RA

    Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2_2 interface

    Get PDF
    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2_2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured gg-factors. Here, the HF spectra measured of different SiC MOSFETs are compared and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC_\textrm{bC}) center and the silicon vacancy (VSi_\textrm{Si}) demonstrates that the PbC_\textrm{bC} center is a more suitable candidate to explain the observed HF spectra.Comment: Accepted for publication in the Journal of Applied Physic

    Effects of age and eccentricity on visual target detection

    Get PDF
    The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance

    Segregation and charge-density-wave order in the spinless Falicov-Kimball model

    Full text link
    The spinless Falicov-Kimball model is solved exactly in the limit of infinite-dimensions on both the hypercubic and Bethe lattices. The competition between segregation, which is present for large U, and charge-density-wave order, which is prevalent at moderate U, is examined in detail. We find a rich phase diagram which displays both of these phases. The model also shows nonanalytic behavior in the charge-density-wave transition temperature when U is large enough to generate a correlation-induced gap in the single-particle density of states.Comment: 10 pages, 10 figure

    Semantic metrics

    Get PDF
    In the context of the Semantic Web, many ontology-related operations, e.g. ontology ranking, segmentation, alignment, articulation, reuse, evaluation, can be boiled down to one fundamental operation: computing the similarity and?or dissimilarity among ontological entities, and in some cases among ontologies themselves. In this paper, we review standard metrics for computing distance measures and we propose a series of semantic metrics. We give a formal account of semantic metrics drawn from a variety of research disciplines, and enrich them with semantics based on standard Description Logic constructs. We argue that concept-based metrics can be aggregated to produce numeric distances at ontology-level and we speculate on the usability of our ideas through potential areas

    Phase separation and the segregation principle in the infinite-U spinless Falicov-Kimball model

    Full text link
    The simplest statistical-mechanical model of crystalline formation (or alloy formation) that includes electronic degrees of freedom is solved exactly in the limit of large spatial dimensions and infinite interaction strength. The solutions contain both second-order phase transitions and first-order phase transitions (that involve phase-separation or segregation) which are likely to illustrate the basic physics behind the static charge-stripe ordering in cuprate systems. In addition, we find the spinodal-decomposition temperature satisfies an approximate scaling law.Comment: 19 pages and 10 figure

    On the structure of the body of states with positive partial transpose

    Full text link
    We show that the convex set of separable mixed states of the 2 x 2 system is a body of constant height. This fact is used to prove that the probability to find a random state to be separable equals 2 times the probability to find a random boundary state to be separable, provided the random states are generated uniformly with respect to the Hilbert-Schmidt (Euclidean) distance. An analogous property holds for the set of positive-partial-transpose states for an arbitrary bipartite system.Comment: 10 pages, 1 figure; ver. 2 - minor changes, new proof of lemma

    Safety and Security Co-engineering and Argumentation Framework

    Get PDF
    Automotive systems become increasingly complex due to their functional range and data exchange with the outside world. Until now, functional safety of such safety-critical electrical/electronic systems has been covered successfully. However, the data exchange requires interconnection across trusted boundaries of the vehicle. This leads to security issues like hacking and malicious attacks against interfaces, which could bring up new types of safety issues. Before mass-production of automotive systems, arguments supported by evidences are required regarding safety and security. Product engineering must be compliant to specific standards and must support arguments that the system is free of unreasonable risks. This paper shows a safety and security co-engineering framework, which covers standard compliant process derivation and management, and supports product specific safety and security co-analysis. Furthermore, we investigate process- and product-related argumentation and apply the approach to an automotive use case regarding safety and security.This work is supported by the projects EMC2 and AMASS. Research leading to these results has received funding from the EU ARTEMIS Joint Undertaking under grant agreement no. 621429 (project EMC2), project AMASS (H2020-ECSEL no 692474; Spain’s MINECO ref. PCIN-2015-262) and from the COMET K2 - Competence Centres for Excellent Technologies Programme of the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry of Science, Research and Economy (bmwfw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG)
    corecore