72 research outputs found

    Event layers in the Japanese Lake Suigetsu 'SG06' sediment core:Description, interpretation and climatic implications

    Get PDF
    Event layers in lake sediments are indicators of past extreme events, mostly the results of floods or earthquakes. Detailed characterisation of the layers allows the discrimination of the sedimentation processes involved, such as surface runoff, landslides or subaqueous slope failures. These processes can then be interpreted in terms of their triggering mechanisms. Here we present a 40 ka event layer chronology from Lake Suigetsu, Japan. The event layers were characterised using a multi-proxy approach, employing light microscopy and μXRF for microfacies analysis. The vast majority of event layers in Lake Suigetsu was produced by flood events (362 out of 369), allowing the construction of the first long-term, quantitative (with respect to recurrence) and well dated flood chronology from the region. The flood layer frequency shows a high variability over the last 40 ka, and it appears that extreme precipitation events were decoupled from the average long-term precipitation. For instance, the flood layer frequency is highest in the Glacial at around 25 ka BP, at which time Japan was experiencing a generally cold and dry climate. Other cold episodes, such as Heinrich Event 1 or the Late Glacial stadial, show a low flood layer frequency. Both observations together exclude a simple, straightforward relationship with average precipitation and temperature. We argue that, especially during Glacial times, changes in typhoon genesis/typhoon tracks are the most likely control on the flood layer frequency, rather than changes in the monsoon front or snow melts. Spectral analysis of the flood chronology revealed periodic variations on centennial and millennial time scales, with 220 yr, 450 yr and a 2000 yr cyclicity most pronounced. However, the flood layer frequency appears to have not only been influenced by climate changes, but also by changes in erosion rates due to, for instance, earthquakes

    Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector

    Get PDF
    J-PET is a detector optimized for registration of photons from the electron-positron annihilation via plastic scintillators where photons interact predominantly via Compton scattering. Registration of both primary and scattered photons enables to determinate the linear polarization of the primary photon on the event by event basis with a certain probability. Here we present quantitative results on the feasibility of such polarization measurements of photons from the decay of positronium with the J-PET and explore the physical limitations for the resolution of the polarization determination of 511 keV photons via Compton scattering. For scattering angles of about 82 deg (where the best contrast for polarization measurement is theoretically predicted) we find that the single event resolution for the determination of the polarization is about 40 deg (predominantly due to properties of the Compton effect). However, for samples larger than ten thousand events the J-PET is capable of determining relative average polarization of these photons with the precision of about few degrees. The obtained results open new perspectives for studies of various physics phenomena such as quantum entanglement and tests of discrete symmetries in decays of positronium and extend the energy range of polarization measurements by five orders of magnitude beyond the optical wavelength regime.Comment: 10 pages, 14 figures, submitted to EPJ

    J-PET: a new technology for the whole-body PET imaging

    Get PDF
    The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built from plastic scintillators. J-PET prototype consists of 192 detection modules arranged axially in three layers forming a cylindrical diagnostic chamber with the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial arrangement of long strips of plastic scintillators, their small light attenuation, superior timing properties, and relative ease of the increase of the axial field-of-view opens promising perspectives for the cost effective construction of the whole-body PET scanner, as well as construction of MR and CT compatible PET inserts. Present status of the development of the J-PET tomograph will be presented and discussed.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published in Acta Phys. Pol.

    Commissioning of the J-PET detector for studies of decays of positronium atoms

    Get PDF
    The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for medical imaging of the whole human body as well as for physics studies involving detection of electron-positron annihilation into photons. J-PET has high angular and time resolution and allows for measurement of spin of the positronium and the momenta and polarization vectors of annihilation quanta. In this article, we present the potential of the J-PET system for background rejection in the decays of positronium atoms.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published in Acta Phys. Pol.

    Evaluation of Single-Chip, Real-Time Tomographic Data Processing on FPGA - SoC Devices

    Get PDF
    A novel approach to tomographic data processing has been developed and evaluated using the Jagiellonian PET (J-PET) scanner as an example. We propose a system in which there is no need for powerful, local to the scanner processing facility, capable to reconstruct images on the fly. Instead we introduce a Field Programmable Gate Array (FPGA) System-on-Chip (SoC) platform connected directly to data streams coming from the scanner, which can perform event building, filtering, coincidence search and Region-Of-Response (ROR) reconstruction by the programmable logic and visualization by the integrated processors. The platform significantly reduces data volume converting raw data to a list-mode representation, while generating visualization on the fly.Comment: IEEE Transactions on Medical Imaging, 17 May 201

    Three-dimensional image reconstruction in J-PET using Filtered Back Projection method

    Get PDF
    We present a method and preliminary results of the image reconstruction in the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic Emission), interactions of the 511 keV photons with a cylindrical detector were generated. Pairs of such photons, flying back-to-back, originate from e+e- annihilations inside a 1-mm spherical source. Spatial and temporal coordinates of hits were smeared using experimental resolutions of the detector. We incorporated the algorithm of the 3D Filtered Back Projection, implemented in the STIR and TomoPy software packages, which differ in approximation methods. Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were obtained, using STIR, for transverse and longitudinal directions, respectively, with no time of flight information included.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published in Acta Phys. Pol.

    Simulation studies of annihilation-photon's polarisation via Compton scattering with the J-PET tomograph

    Get PDF
    J-PET is the first positron-emission tomograph (PET) constructed from plastic scintillators. It was optimized for the detection of photons from electron-positron annihilation. Such photons, having an energy of 511 keV, interact with electrons in plastic scintillators predominantly via the Compton effect. Compton scattering is at most probable at an angle orthogonal to the electric field vector of the interacting photon. Thus registration of multiple photon scatterings with J-PET enables to determine the polarization of the annihilation photons. In this contribution we present estimates on the physical limitation in the accuracy of the polarization determination of 511511~keV photons with the J-PET detector.Comment: Submitted to Hyperfine Interaction

    Determination of the 3\gamma fraction from positron annihilation in mesoporous materials for symmetry violation experiment with J-PET scanner

    Get PDF
    Various mesoporous materials were investigated to choose the best material for experiments requiring high yield of long-lived positronium. We found that the fraction of 3\gamma annihilation determined using \gamma-ray energy spectra and positron annihilation lifetime spectra (PAL) changed from 20% to 25%. The 3gamma fraction and o-Ps formation probability in the polymer XAD-4 is found to be the largest. Elemental analysis performed using scanning electron microscop (SEM) equipped with energy-dispersive X-ray spectroscop EDS show high purity of the investigated materials.Comment: 12 pages, 2 figure

    Feasibility studies for imaging e+^{+}e^{-} annihilation with modular multi-strip detectors

    Full text link
    Studies based on imaging the annihilation of the electron (e^{-}) and its antiparticle positron (e+^{+}) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of e+^{+}e^{-} into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e+^{+} beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging e+^{+}e^{-} annihilations and thus their applicability for gravitational studies of Ps
    corecore