268,779 research outputs found

    A summary of rotorcraft handling qualities research at NASA Ames Research Center

    Get PDF
    The objectives of the rotorcraft handling qualities research program at Ames Research Center are twofold: (1) to develop basic handling qualities design criteria to permit cost effective design decisions to be made for helicopters, and (2) to obtain basic handling qualities data for certification of new rotorcraft configurations. The research on the helicopter handling qualities criteria has focused primarily on military nap-of-the-earth (NOE) terrain flying missions, which are flown in day visual meteorological conditions (VMC) and instrument meteorological conditions (IMC), or at night. The Army has recently placed a great deal of emphasis on terrain flying tactics in order to survive and effectively complete the missions in modern and future combat environments. Unfortunately, the existing Military Specification MIL-H 8501A which is a 1961 update of a 1951 document, does not address the handling qualities requirements for terrain flying. The research effort is therefore aimed at filling the void and is being conducted jointly with the Army Aeromechanics Laboratory at Ames. The research on rotorcraft airworthiness standards with respect to flying qualities requirements was conducted to collaboration with the Federal Aviation Administration (FAA)

    A simplified rotor system mathematical model for piloted flight dynamics simulation

    Get PDF
    The model was developed for real-time pilot-in-the-loop investigation of helicopter flying qualities. The mathematical model included the tip-path plane dynamics and several primary rotor design parameters, such as flapping hinge restraint, flapping hinge offset, blade Lock number, and pitch-flap coupling. The model was used in several exploratory studies of the flying qualities of helicopters with a variety of rotor systems. The basic assumptions used and the major steps involved in the development of the set of equations listed are described. The equations consisted of the tip-path plane dynamic equation, the equations for the main rotor forces and moments, and the equation for control phasing required to achieve decoupling in pitch and roll due to cyclic inputs

    Unified results of several analytical and experimental studies of helicopter handling qualities in visual terrain flight

    Get PDF
    The studies were undertaken to investigate the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation on the flying qualities of helicopters performing low-level, terrain-flying tasks in visual meteorological conditions. Some unified results are presented, and the validity and limitations of the flying-qualities data obtained are interpreted. Selected results, related to various design parameters, provide guidelines for the preliminary design of rotor systems and aircraft augmentation systems

    Permissive Controller Synthesis for Probabilistic Systems

    Get PDF
    We propose novel controller synthesis techniques for probabilistic systems modelled using stochastic two-player games: one player acts as a controller, the second represents its environment, and probability is used to capture uncertainty arising due to, for example, unreliable sensors or faulty system components. Our aim is to generate robust controllers that are resilient to unexpected system changes at runtime, and flexible enough to be adapted if additional constraints need to be imposed. We develop a permissive controller synthesis framework, which generates multi-strategies for the controller, offering a choice of control actions to take at each time step. We formalise the notion of permissivity using penalties, which are incurred each time a possible control action is disallowed by a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that minimises these penalties, whilst guaranteeing the satisfaction of a specified system property. We establish several key results about the optimality of multi-strategies and the complexity of synthesising them. Then, we develop methods to perform permissive controller synthesis using mixed integer linear programming and illustrate their effectiveness on a selection of case studies

    Comparison of differential gain in single quantum well and bulk double heterostructure lasers

    Get PDF
    The differential gain in single quantum well and bulk double heterostructure lasers is compared. In variance with previous predictions, no differential gain enhancement is found in single quantum well structure lasers at room temperature. Only at low temperatures do the quantum well lasers possess higher differential gain than bulk double heterostructure lasers. The results have important implications in the area of high speed phenomena for these devices

    A comparison of amplitude-phase coupling and linewidth enhancement in semiconductor quantum-well and bulk lasers

    Get PDF
    The amplitude-phase coupling factor α (linewidth enhancement factor) is compared for typical semiconductor quantum-well and bulk double heterostructure lasers. As a direct consequence of the reduction of the differential gain, there is no reduction of α in single-quantum-well lasers compared to bulk lasers. The number of quantum wells strongly affects the amplitude-phase coupling in quantum-well lasers. It is shown that the interband transition induced amplitude-phase coupling dominates that induced by the plasma effect of carriers in typical quantum-well lasers. By considering the spontaneous emission factor in the spectral linewidth, the authors show that there is an optimal number of quantum wells for achieving the narrowest spectral linewidth

    The gain and carrier density in semiconductor lasers under steady-state and transient conditions

    Get PDF
    The carrier distribution functions in a semiconductor crystal in the presence of a strong optical field are obtained. These are used to derive expressions for the gain dependence on the carrier density and on the optical intensity-the gain suppression effect. A general expression for high-order nonlinear gain coefficients is obtained. This formalism is used to describe the carrier and power dynamics in semiconductor lasers above and below threshold in the static and transient regimes

    Integrated optics technology study

    Get PDF
    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given

    Probabilistic Kernel Support Vector Machines

    Full text link
    We propose a probabilistic enhancement of standard kernel Support Vector Machines for binary classification, in order to address the case when, along with given data sets, a description of uncertainty (e.g., error bounds) may be available on each datum. In the present paper, we specifically consider Gaussian distributions to model uncertainty. Thereby, our data consist of pairs (xi,ÎŁi)(x_i,\Sigma_i), i∈{1,
,N}i\in\{1,\ldots,N\}, along with an indicator yi∈{−1,1}y_i\in\{-1,1\} to declare membership in one of two categories for each pair. These pairs may be viewed to represent the mean and covariance, respectively, of random vectors Οi\xi_i taking values in a suitable linear space (typically Rn\mathbb R^n). Thus, our setting may also be viewed as a modification of Support Vector Machines to classify distributions, albeit, at present, only Gaussian ones. We outline the formalism that allows computing suitable classifiers via a natural modification of the standard "kernel trick." The main contribution of this work is to point out a suitable kernel function for applying Support Vector techniques to the setting of uncertain data for which a detailed uncertainty description is also available (herein, "Gaussian points").Comment: 6 pages, 6 figure
    • 

    corecore