81 research outputs found

    Survey of X-rays from Massive Stars Observed at High Spectral Resolution with Chandra

    Full text link
    Identifying trends between observational data and the range of physical parameters of massive stars is a critical step to the still-elusive full understanding of the source, structure, and evolution of X-ray emission from the stellar winds, requiring a substantial sample size and systematic analysis methods. The \emph{Chandra} data archive as of 2022 contains 37 high resolution spectra of O, B, and WR stars, observed with the \emph{Chandra}/HETGS and of sufficient quality to fit the continua and emission line profiles. Using a systematic approach to the data analysis, we explore morphological trends in the line profiles (i.e., O, Ne, Mg, Si) and find that the centroid offsets of resolved lines versus wavelength can be separated in three empirically-defined groups based on the amount of line broadening and centroid offset. Using \ion{Fe}{17} (15.01 \AA, 17.05 \AA) and \ion{Ne}{10} α\alpha (12.13 \AA) lines which are prevalent among the sample stars, we find a well-correlated linear trend of increasing Full Width Half Maximum (FWHM) with faster wind terminal velocity. The H-like/He-like total line flux ratio for strong lines displays different trends with spectral class depending on ion species. Some of the sources in our sample have peculiar properties (e.g., magnetic and γ\gamma Cas-analogue stars) and we find that these sources stand out as outliers from more regular trends. Finally, our spectral analysis is presented summarily in terms of X-ray spectral energy distributions in specific luminosity for each source, plus tables of line identifications and fluxes.Comment: 78 pages, 46 figures, 41 tables, Accepted for publication in Ap

    Effects of a Standardized Phenolic-Enriched Maple Syrup Extract on β-Amyloid Aggregation, Neuroinflammation in Microglial and Neuronal Cells, and β-Amyloid Induced Neurotoxicity in \u3cem\u3eCaenorhabditis elegans\u3c/em\u3e

    Get PDF
    Published data supports the neuroprotective effects of several phenolic-containing natural products, including certain fruit, berries, spices, nuts, green tea, and olive oil. However, limited data are available for phenolic-containing plant-derived natural sweeteners including maple syrup. Herein, we investigated the neuroprotective effects of a chemically standardized phenolic-enriched maple syrup extract (MSX) using a combination of biophysical, in vitro, and in vivo studies. Based on biophysical data (Thioflavin T assay, transmission electron microscopy, circular dichroism, dynamic light scattering, and zeta potential), MSX reduced amyloid β1−42 peptide (Aβ1−42) fibrillation in a concentration-dependent manner (50–500 μg/mL) with similar effects as the neuroprotective polyphenol, resveratrol, at its highest test concentration (63.5 % at 500 μg/mL vs. 77.3 % at 50 μg/mL, respectively). MSX (100 μg/mL) decreased H2O2-induced oxidative stress (16.1 % decrease in ROS levels compared to control), and down-regulated the production of lipopolysaccharide (LPS)-stimulated inflammatory markers (22.1, 19.9, 74.8, and 87.6 % decrease in NOS, IL-6, PGE2, and TNFα levels, respectively, compared to control) in murine BV-2 microglial cells. Moreover, in a non-contact co-culture cell model, differentiated human SH-SY5Y neuronal cells were exposed to conditioned media from BV-2 cells treated with MSX (100 μg/mL) and LPS or LPS alone. MSX-BV-2 media increased SH-SY5Y cell viability by 13.8 % compared to media collected from LPS-BV-2 treated cells. Also, MSX (10 μg/mL) showed protective effects against Aβ1−42 induced neurotoxicity and paralysis in Caenorhabditis elegans in vivo. These data support the potential neuroprotective effects of MSX warranting further studies on this natural product

    Accreting on the edge: a luminosity-dependent cyclotron line in the Be/X-ray Binary 2S 1553-542 accompanied by accretion regimes transition

    Full text link
    Accreting X-ray pulsars (XRPs) undergo luminous X-ray outbursts during which the luminosity-dependent spectral and timing features of the neutron star's emission can be analyzed in detail, thus shedding light on the accretion regime at work. We took advantage of a monitoring campaign performed with NuSTAR, Swift/XRT, AstroSat and NICER, to follow the Be/X-ray Binary 2S 1553-542 along one of its rare outbursts and trace its spectral and timing evolution. We report the discovery of a luminosity-dependent cyclotron line energy for the first time in this source. The pulse profiles and pulsed fraction also show variability along the outburst, consistently with the interpretation that the source transitions from the sub-critical to the super-critical accretion regime, separated by a critical luminosity of Lcrit4×1037_{crit}\approx4\times10^{37} erg/s.Comment: Accepted on ApJ. 11 pages, 7 figures, 3 table

    Prospects for Time-Domain and Multi-Messenger Science with AXIS

    Full text link
    The Advanced X-ray Imaging Satellite (AXIS) promises revolutionary science in the X-ray and multi-messenger time domain. AXIS will leverage excellent spatial resolution (<1.5 arcsec), sensitivity (80x that of Swift), and a large collecting area (5-10x that of Chandra) across a 24-arcmin diameter field of view to discover and characterize a wide range of X-ray transients from supernova-shock breakouts to tidal disruption events to highly variable supermassive black holes. The observatory's ability to localize and monitor faint X-ray sources opens up new opportunities to hunt for counterparts to distant binary neutron star mergers, fast radio bursts, and exotic phenomena like fast X-ray transients. AXIS will offer a response time of <2 hours to community alerts, enabling studies of gravitational wave sources, high-energy neutrino emitters, X-ray binaries, magnetars, and other targets of opportunity. This white paper highlights some of the discovery science that will be driven by AXIS in this burgeoning field of time domain and multi-messenger astrophysics.Comment: This White Paper is part of a series commissioned for the AXIS Probe Concept Mission; additional AXIS White Papers can be found at http://axis.astro.umd.ed

    Weed dynamics, wheat (Triticum aestivum) yield and irrigation water-use efficiency under conservation agriculture

    Get PDF
    A field experiment was conducted to evaluate the impacts of a 12-year old conservation agriculture (CA)- based pigeon pea-wheat system on weeds, wheat crop, and resource use during winter (rabi) 2021–22. Results indicated that surface retention of residue irrespective of ZT permanent bed and N dose led to significant reduction in weed interference at 60 DAS. CA-based systems reduced weed density and dry weight considerably than CT. CA- based systems led to significantly higher wheat grain yield (by 11.6–14.9%) and net B:C (by 24.0 –28.0%) than CT, and PFBR100N and PBBR100N were slightly superior to others. PBBR100N and PBBR75N had lower irrigation water use and significantly higher irrigation water productivity than CT. Contrast analysis showed that wheat yield and water productivity were comparable between 75% N and 100% N in CA, indicating a saving of 25% N under CA

    Metastable states from multinucleon excitations in Tl 202 and Pb 203

    Get PDF
    The excited level structures of Tl202 and Pb203, above the 7+ and 29/2- isomers, respectively, have been studied. An isomer with Iπ=20+ and T1/2=215(10)μs has been established in Tl202, and the level scheme extended from I=10 to 20ℏ with the placement of fifteen new transitions. In Pb203, the Iπ=37/2+ state is established to be metastable, with T1/2=2.5(3)ns. Levels in both nuclei arise from intrinsic excitations, with likely particle-hole character for the higher-lying states in Pb203. The 20+ isomer in Tl202 is most likely associated with a πh11/2-1 - ν(i13/2-2,f5/2-1) configuration, while the 37/2+ state in Pb203 results from the excitation of five neutrons. Calculations, using both an empirical approach and the oxbash code, have been performed to aid in the description of the excited level structure
    corecore