3,708 research outputs found
Glass Transition in a Two-Dimensional Electron System in Silicon in a Parallel Magnetic Field
Studies of low-frequency resistance noise show that the glassy freezing of
the two-dimensional electron system (2DES) in Si in the vicinity of the
metal-insulator transition (MIT) persists in parallel magnetic fields B of up
to 9 T. At low B, both the glass transition density and , the
critical density for the MIT, increase with B such that the width of the
metallic glass phase () increases with B. At higher B, where the
2DES is spin polarized, and no longer depend on B. Our results
demonstrate that charge, as opposed to spin, degrees of freedom are responsible
for glassy ordering of the 2DES near the MIT.Comment: 4 pages, 5 figure
Metal-insulator transition and glassy behavior in two-dimensional electron systems
Studies of low-frequency resistance noise demonstrate that glassy freezing
occurs in a two-dimensional electron system in silicon in the vicinity of the
metal-insulator transition (MIT). The width of the metallic glass phase, which
separates the 2D metal and the (glassy) insulator, depends strongly on
disorder, becoming extremely small in high-mobility (low-disorder) samples. The
glass transition is manifested by a sudden and dramatic slowing down of the
electron dynamics, and by a very abrupt change to the sort of statistics
characteristic of complicated multistate systems. In particular, the behavior
of the second spectrum, an important fourth-order noise statistic, indicates
the presence of long-range correlations between fluctuators in the glassy
phase, consistent with the hierarchical picture of glassy dynamics.Comment: Contribution to conference on "Noise as a tool for studying
materials" (SPIE), Santa Fe, New Mexico, June 2003; 15 pages, 12 figs.
(includes some low-quality figs; send e-mail to get high-quality figs.
On the Uniqueness of Solution of Magnetostatic Vector‐potential Problems by Three‐dimensional Finite‐element Methods
In this paper, particular attention is paid to the impact of finite‐element approximation on uniqueness and to approximations implicit in finite element formulations from the uniqueness requirements standpoint. It is also shown that the flux density is unique without qualifications. The theoretical and numerical uniqueness of the magnetic vector potential in three‐dimensional problems is also given. This analysis is restricted to linear, isotropic media with Dirichlet Boundary conditions. As an interesting consequence of this analysis it is shown that, under usual conditions adopted in obtaining three‐dimensional finite‐element solutions, it is not necessary to specify div Ā in order that Ā be uniquely defined
Electronic structure of the substitutional versus interstitial manganese in GaN
Density-functional studies of the electron states in the dilute magnetic
semiconductor GaN:Mn reveal major differences for the case of the Mn impurity
at the substitutional site Mn_Ga versus the interstitial site Mn_I. The
splitting of the two-fold and the three-fold degenerate Mn(d)states in the gap
are reversed between the two cases, which is understood in terms of the
symmetry-controlled hybridization with the neighboring atoms. In contrast to
Mn_Ga, which acts as a deep acceptor, Mn_I acts as a donor, suggesting the
formation of Coulomb-stabilized complexes such as (Mn_Ga Mn_I Mn_Ga), where the
acceptor level of Mn_Ga is passivated by the Mn_I donor. Formation of such
passivated clusters might be the reason for the observed low carrier-doping
efficiency of Mn in GaN. Even though the Mn states are located well inside the
gap,the wave functions are spread far away from the impurity center. This is
caused by the hybridization with the nitrogen atoms, which acquire small
magnetic moments aligned with the Mn moment. Implications of the differences in
the electronic structure for the optical properties are discussed
- …