research

Metal-insulator transition and glassy behavior in two-dimensional electron systems

Abstract

Studies of low-frequency resistance noise demonstrate that glassy freezing occurs in a two-dimensional electron system in silicon in the vicinity of the metal-insulator transition (MIT). The width of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility (low-disorder) samples. The glass transition is manifested by a sudden and dramatic slowing down of the electron dynamics, and by a very abrupt change to the sort of statistics characteristic of complicated multistate systems. In particular, the behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: Contribution to conference on "Noise as a tool for studying materials" (SPIE), Santa Fe, New Mexico, June 2003; 15 pages, 12 figs. (includes some low-quality figs; send e-mail to get high-quality figs.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/12/2019