32 research outputs found

    Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase

    Get PDF
    BACKGROUND Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. METHODS NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml(-1)) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. RESULTS Ropivacaine (1 nM-100 μM) and lidocaine (1-100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10(-6) M for lidocaine; IC50=1.52×10(-10) M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). CONCLUSIONS At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasi

    Volatile anaesthetics reduce neutrophil inflammatory response by interfering with CXC receptor-2 signalling

    Get PDF
    Background Growing evidence suggests a protective effect of volatile anaesthetics in ischaemia-reperfusion (I/R)-injury, and the accumulation of neutrophils is a crucial event. Pro-inflammatory cytokines carrying the C-X-C-motif including interleukin-8 (IL-8) and CXC-ligand 1 (CXCL1) activate CXC receptor-1 (CXCR1; stimulated by IL-8), CXC receptor-2 (CXCR2; stimulated by IL-8 and CXCL1), or both to induce CD11b-dependent neutrophil transmigration. Inhibition of CXCR1, CXCR2, or both reduces I/R-injury by preventing neutrophil accumulation. We hypothesized that interference with CXCR1/CXCR2 signalling contributes to the well-established beneficial effect of volatile anaesthetics in I/R-injury. Methods Isolated human neutrophils were stimulated with IL-8 or CXCL1 and exposed to volatile anaesthetics (sevoflurane/desflurane). Neutrophil migration was assessed using an adapted Boyden chamber. Expression of CD11b, CXCR1, and CXCR2 was measured by flow cytometry. Blocking antibodies against CXCR1/CXCR2/CD11b and phorbol myristate acetate were used to investigate specific pathways. Results Volatile anaesthetics reduced CD11b-dependent neutrophil transmigration induced by IL-8 by >30% and CD11b expression by 18 and 27% with sevoflurane/desflurane, respectively. This effect was independent of CXCR1/CXCR2 expression and CXCR1/CXCR2 endocytosis. Inhibition of CXCR1 signalling did not affect downregulation of CD11b with volatile anaesthetics. Blocking of CXCR2-signalling neutralized effects by volatile anaesthetics on CD11b expression. Specific stimulation of CXCR2 with CXCL1 was sufficient to induce upregulation of CD11b, which was impaired with volatile anaesthetics. No effect of volatile anaesthetics was observed with direct stimulation of protein kinase C located downstream of CXCR1/CXCR2. Conclusion Volatile anaesthetics attenuate neutrophil inflammatory responses elicited by CXC cytokines through interference with CXCR2 signalling. This might contribute to the beneficial effect of volatile anaesthetics in I/R-injur

    Volatile anaesthetics reduce neutrophil inflammatory response by interfering with CXC receptor-2 signalling

    Full text link
    BACKGROUND Growing evidence suggests a protective effect of volatile anaesthetics in ischaemia-reperfusion (I/R)-injury, and the accumulation of neutrophils is a crucial event. Pro-inflammatory cytokines carrying the C-X-C-motif including interleukin-8 (IL-8) and CXC-ligand 1 (CXCL1) activate CXC receptor-1 (CXCR1; stimulated by IL-8), CXC receptor-2 (CXCR2; stimulated by IL-8 and CXCL1), or both to induce CD11b-dependent neutrophil transmigration. Inhibition of CXCR1, CXCR2, or both reduces I/R-injury by preventing neutrophil accumulation. We hypothesized that interference with CXCR1/CXCR2 signalling contributes to the well-established beneficial effect of volatile anaesthetics in I/R-injury. METHODS Isolated human neutrophils were stimulated with IL-8 or CXCL1 and exposed to volatile anaesthetics (sevoflurane/desflurane). Neutrophil migration was assessed using an adapted Boyden chamber. Expression of CD11b, CXCR1, and CXCR2 was measured by flow cytometry. Blocking antibodies against CXCR1/CXCR2/CD11b and phorbol myristate acetate were used to investigate specific pathways. RESULTS Volatile anaesthetics reduced CD11b-dependent neutrophil transmigration induced by IL-8 by >30% and CD11b expression by 18 and 27% with sevoflurane/desflurane, respectively. This effect was independent of CXCR1/CXCR2 expression and CXCR1/CXCR2 endocytosis. Inhibition of CXCR1 signalling did not affect downregulation of CD11b with volatile anaesthetics. Blocking of CXCR2-signalling neutralized effects by volatile anaesthetics on CD11b expression. Specific stimulation of CXCR2 with CXCL1 was sufficient to induce upregulation of CD11b, which was impaired with volatile anaesthetics. No effect of volatile anaesthetics was observed with direct stimulation of protein kinase C located downstream of CXCR1/CXCR2. CONCLUSION Volatile anaesthetics attenuate neutrophil inflammatory responses elicited by CXC cytokines through interference with CXCR2 signalling. This might contribute to the beneficial effect of volatile anaesthetics in I/R-injury

    Anesthesia and colorectal cancer - The perioperative period as a window of opportunity?

    Full text link
    Gastrointestinal malignancies largely contribute to cancer related deaths in the United States, with colorectal cancer representing the 3rd place of the ten leading entities of mortality due to cancer for both females and males. The majority of patients with GI tumors has to undergo surgery (either as a curative or palliative intervention) and are therefore also in need for a proper general and/or regional anesthesia. Recent findings have suggested that the type of anesthesia administered might have an impact on cancer recurrence and metastasis and thus this new field in the anesthesia world has become a largely studied topic. This review highlights current concepts and summarizes the evidence for an impact of the type of anesthesia on patient outcome after cancer surgery, suggesting the perioperative period might be a "window of opportunity" which should not be missed

    Clinically relevant concentrations of lidocaine and ropivacaine inhibit TNFα-induced invasion of lung adenocarcinoma cells in vitro by blocking the activation of Akt and focal adhesion kinase

    Full text link
    BACKGROUND Matrix-metalloproteinases (MMP) and cancer cell invasion are crucial for solid tumour metastasis. Important signalling events triggered by inflammatory cytokines, such as tumour necrosis factor α (TNFα), include Src-kinase-dependent activation of Akt and focal adhesion kinase (FAK) and phosphorylation of caveolin-1. Based on previous studies where we demonstrated amide-type local anaesthetics block TNFα-induced Src activation in malignant cells, we hypothesized that local anaesthetics might also inhibit the activation and/or phosphorylation of Akt, FAK and caveolin-1, thus attenuating MMP release and invasion of malignant cells. METHODS NCI-H838 lung adenocarcinoma cells were incubated with ropivacaine or lidocaine (1 nM-100 µM) in absence/presence of TNFα (20 ng ml(-1)) for 20 min or 4 h, respectively. Activation/phosphorylation of Akt, FAK and caveolin-1 were evaluated by Western blot, and MMP-9 secretion was determined by enzyme-linked immunosorbent assay. Tumour cell migration (electrical wound-healing assay) and invasion were also assessed. RESULTS Ropivacaine (1 nM-100 μM) and lidocaine (1-100 µM) significantly reduced TNFα-induced activation/phosphorylation of Akt, FAK and caveolin-1 in NCI-H838 cells. MMP-9 secretion triggered by TNFα was significantly attenuated by both lidocaine and ropivacaine (half-maximal inhibitory concentration [IC50]=3.29×10(-6) M for lidocaine; IC50=1.52×10(-10) M for ropivacaine). The TNFα-induced increase in invasion was completely blocked by both lidocaine (10 µM) and ropivacaine (1 µM). CONCLUSIONS At clinically relevant concentrations both ropivacaine and lidocaine blocked tumour cell invasion and MMP-9 secretion by attenuating Src-dependent inflammatory signalling events. Although determined entirely in vitro, these findings provide significant insight into the potential mechanism by which local anaesthetics might diminish metastasis

    Hands-Off Time for Endotracheal Intubation during CPR Is Not Altered by the Use of the C-MAC Video-Laryngoscope Compared to Conventional Direct Laryngoscopy. A Randomized Crossover Manikin Study.

    Get PDF
    INTRODUCTION:Sufficient ventilation and oxygenation through proper airway management is essential in patients undergoing cardio-pulmonary resuscitation (CPR). Although widely discussed, securing the airway using an endotracheal tube is considered the standard of care. Endotracheal intubation may be challenging and causes prolonged interruption of chest compressions. Videolaryngoscopes have been introduced to better visualize the vocal cords and accelerate intubation, which makes endotracheal intubation much safer and may contribute to intubation success. Therefore, we aimed to compare hands-off time and intubation success of direct laryngoscopy with videolaryngoscopy (C-MAC, Karl Storz, Tuttlingen, Germany) in a randomized, cross-over manikin study. METHODS:Twenty-six anesthesia residents and twelve anesthesia consultants of the University Hospital Zurich were recruited through a voluntary enrolment. All participants performed endotracheal intubation using direct laryngoscopy and C-MAC in a random order during ongoing chest compressions. Participants were strictly advised to stop chest compression only if necessary. RESULTS:The median hands-off time was 1.9 seconds in direct laryngoscopy, compared to 3 seconds in the C-MAC group. In direct laryngoscopy 39 intubation attempts were recorded, resulting in an overall first intubation attempt success rate of 97%, compared to 38 intubation attempts and 100% overall first intubation attempt success rate in the C-MAC group. CONCLUSION:As a conclusion, the results of our manikin-study demonstrate that video laryngoscopes might not be beneficial compared to conventional, direct laryngoscopy in easily accessible airways under CPR conditions and in experienced hands. The benefits of video laryngoscopes are of course more distinct in overcoming difficult airways, as it converts a potential "blind intubation" into an intubation under visual control

    Regional anaesthesia and cancer metastases: the implication of local anaesthetics

    Full text link
    Clinical and basic science studies have demonstrated the anti-inflammatory properties of local anaesthetics. Recent studies have begun to unravel molecular pathways linking inflammation and cancer. Regional anaesthesia is associated in some retrospective clinical studies with reduced risk of metastasis and increased long-term survival. The potential beneficial effects of regional anaesthesia have been attributed mainly to the inhibition of the neuroendocrine stress response to surgery and to the reduction in the requirements of volatile anaesthetics and opioids. Because cancer is linked to inflammation and local anaesthetics have anti-inflammatory effects, these agents may participate in reducing the risk of metastasis, but their mechanism of action is unknown. We demonstrated in vitro that amide local anaesthetics attenuate tumour cell migration as well as signalling pathways enhancing tumour growth and metastasis. This has provided the first evidence of a molecular mechanism by which regional anaesthesia might inhibit or reduce cancer metastases

    Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade

    Full text link
    BACKGROUND: Retrospective analysis of patients undergoing cancer surgery suggests the use of regional anesthesia may reduce cancer recurrence and improve survival. Amide-linked local anesthetics have antiinflammatory properties, although the mechanism of action in this regard is unclear. As inflammatory processes involving Src tyrosine protein kinase and intercellular adhesion molecule-1 are important in tumor growth and metastasis, we hypothesized that amide-linked local anesthetics may inhibit inflammatory Src-signaling involved in migration of adenocarcinoma cells. METHODS: NCI-H838 lung cancer cells were incubated with tumor necrosis factor-α in absence/presence of ropivacaine, lidocaine, or chloroprocaine (1 nM-100 μM). Cell migration and total cell lysate Src-activation and intercellular adhesion molecule-1 phosphorylation were assessed. The role of voltage-gated sodium-channels in the mechanism of local anesthetic effects was also evaluated. RESULTS: Ropivacaine treatment (100 μM) of H838 cells for 20 min decreased basal Src activity by 62% (P=0.003), and both ropivacaine and lidocaine coadministered with tumor necrosis factor-α statistically significantly decreased Src-activation and intercellular adhesion molecule-1 phosphorylation, whereas chloroprocaine had no such effect. Migration of these cells at 4 h was inhibited by 26% (P=0.005) in presence of 1 μM ropivacaine and 21% by 1 μM lidocaine (P=0.004). These effects of ropivacaine and lidocaine were independent of voltage-gated sodium-channel inhibition. CONCLUSIONS: This study indicates that amide-, but not ester-linked, local anesthetics may provide beneficial antimetastatic effects. The observed inhibition of NCI-H838 cell migration by lidocaine and ropivacaine was associated with the inhibition of tumor necrosis factor-α-induced Src-activation and intercellular adhesion molecule-1 phosphorylation, providing the first evidence of a molecular mechanism that appears to be independent of their known role as sodium-channel blockers
    corecore