25,660 research outputs found

    Field Dependent Phase Diagram of the Quantum Spin Chain (CH3)2NH2CuCl3

    Full text link
    Although (CH3)2NH2CuCl3 (MCCL) was first examined in the 1930's [1], there are open questions regarding the magnetic dimensionality and nature of the magnetic properties. MCCL is proposed to be a S=1/2 alternating ferromagnetic antiferromagnetic spin chain alternating along the crystalline a-axis [2,3]. Proposed ferromagnetic (JFM =1.3 meV) and antiferromagnetic (JAFM =1.1 meV) exchange constants make this system particularly interesting for experimental study. Because JFM and JAFM are nearly identical, the system should show competing behavior between S=1/2 (AFM) and S=1(FM) effects. We report low temperature magnetic field dependent susceptibility, chi(H), and specific heat, Cp, of MCCL. These provide an initial magnetic-field versus temperature phase diagram. A zero-field phase transition consistent with long range magnetic order is observed at T=0.9 K. The transition temperature can be reduced via application of a magnetic field. We also present comparisons to a FM/AFM dimer model that accounts for chi(T,H=0) and Cp(H,T).Comment: 2 pages, 1 figure included in text. Submitted to proceedings of 24th International Conference on Low Temperature Physics, August 200

    Circuit theory for decoherence in superconducting charge qubits

    Full text link
    Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits. In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative environment is taken into account. Moreover, both self and mutual inductances of the circuit are fully included.Comment: 8 pages, 3 figures; v2: published version; typo in Eq.(30) corrected, minor changes, reference adde

    Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP

    Full text link
    Context. A large prominence was observed on September 24, 2013, for three hours (12:12 UT -15:12 UT) with the newly launched (June 2013) Interface Region Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical Telescope (SOT), the Solar Dynamic Observatory Atmospheric Imaging Assembly (SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in the Meudon Solar Tower. Aims. The aim of this work is to study the dynamics of the prominence fine structures in multiple wavelengths to understand their formation. Methods. The spectrographs IRIS and MSDP provided line profiles with a high cadence in Mg II and in Halpha lines. Results. The magnetic field is found to be globally horizontal with a relatively weak field strength (8-15 Gauss). The Ca II movie reveals turbulent-like motion that is not organized in specific parts of the prominence. On the other hand, the Mg II line profiles show multiple peaks well separated in wavelength. Each peak corresponds to a Gaussian profile, and not to a reversed profile as was expected by the present non-LTE radiative transfer modeling. Conclusions. Turbulent fields on top of the macroscopic horizontal component of the magnetic field supporting the prominence give rise to the complex dynamics of the plasma. The plasma with the high velocities (70 km/s to 100 km/s if we take into account the transverse velocities) may correspond to condensation of plasma along more or less horizontal threads of the arch-shape structure visible in 304 A. The steady flows (5 km/s) would correspond to a more quiescent plasma (cool and prominence-corona transition region) of the prominence packed into dips in horizontal magnetic field lines. The very weak secondary peaks in the Mg II profiles may reflect the turbulent nature of parts of the prominence.Comment: 15 pages, 14 figure

    Heat capacity anomaly at the quantum critical point of the Transverse Ising Magnet CoNb_2O_6

    Full text link
    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2_2O6_6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. We ask if there are low-lying spin excitations distinct from these relatively high energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30%\% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected, by the quantum transition.Comment: 14 pages total, 8 figure

    Possible observation of phase separation near a quantum phase transition in doubly connected ultrathin superconducting cylinders of aluminum

    Full text link
    The kinetic energy of superconducting electrons in an ultrathin, doubly connected superconducting cylinder, determined by the applied flux, increases as the cylinder diameter decreases, leading to a destructive regime around half-flux quanta and a superconductor to normal metal quantum phase transition (QPT). Regular step-like features in resistance vs. temperature curves taken at fixed flux values were observed near the QPT in ultrathin Al cylinders. It is proposed that these features are most likely resulted from a phase separation near the QPT in which normal regions nucleate in a homogeneous superconducting cylinder.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let

    Characteristics of light charged particle emission in the ternary fission of 250Cf and 252Cf at different excitation energies

    Get PDF
    The emission probabilities and the energy distributions of tritons, α and ^6He particles emitted in the spontaneous ternary fission (zero excitation energy) of ^250Cf and ^252Cf and in the cold neutron induced fission (excitation energy ≈ 6.5 MeV) of ^249Cf and 251Cf are determined. The particle identification was done with suited ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the ILL (Grenoble, France) for the neutron induced fission measurements. Hence particle emission characteristics of the fissioning systems ^250Cf and ^252Cf are obtained at zero and at about 6.5 MeV excitation energies. While the triton emission probability is hardly influenced by the excitation energy, the ^4He and ^6He emission probability in spontaneous fission is higher than for neutron induced fission. This can be explained by the strong influence of the cluster preformation probability on the ternary particle emission probability
    • …
    corecore