25,660 research outputs found
Field Dependent Phase Diagram of the Quantum Spin Chain (CH3)2NH2CuCl3
Although (CH3)2NH2CuCl3 (MCCL) was first examined in the 1930's [1], there
are open questions regarding the magnetic dimensionality and nature of the
magnetic properties. MCCL is proposed to be a S=1/2 alternating ferromagnetic
antiferromagnetic spin chain alternating along the crystalline a-axis [2,3].
Proposed ferromagnetic (JFM =1.3 meV) and antiferromagnetic (JAFM =1.1 meV)
exchange constants make this system particularly interesting for experimental
study. Because JFM and JAFM are nearly identical, the system should show
competing behavior between S=1/2 (AFM) and S=1(FM) effects. We report low
temperature magnetic field dependent susceptibility, chi(H), and specific heat,
Cp, of MCCL. These provide an initial magnetic-field versus temperature phase
diagram. A zero-field phase transition consistent with long range magnetic
order is observed at T=0.9 K. The transition temperature can be reduced via
application of a magnetic field. We also present comparisons to a FM/AFM dimer
model that accounts for chi(T,H=0) and Cp(H,T).Comment: 2 pages, 1 figure included in text. Submitted to proceedings of 24th
International Conference on Low Temperature Physics, August 200
Circuit theory for decoherence in superconducting charge qubits
Based on a network graph analysis of the underlying circuit, a quantum theory
of arbitrary superconducting charge qubits is derived. Describing the
dissipative elements of the circuit with a Caldeira-Leggett model, we calculate
the decoherence and leakage rates of a charge qubit. The analysis includes
decoherence due to a dissipative circuit element such as a voltage source or
the quasiparticle resistances of the Josephson junctions in the circuit. The
theory presented here is dual to the quantum circuit theory for superconducting
flux qubits. In contrast to spin-boson models, the full Hilbert space structure
of the qubit and its coupling to the dissipative environment is taken into
account. Moreover, both self and mutual inductances of the circuit are fully
included.Comment: 8 pages, 3 figures; v2: published version; typo in Eq.(30) corrected,
minor changes, reference adde
Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP
Context. A large prominence was observed on September 24, 2013, for three
hours (12:12 UT -15:12 UT) with the newly launched (June 2013) Interface Region
Imaging Spectrograph (IRIS), THEMIS (Tenerife), the Hinode Solar Optical
Telescope (SOT), the Solar Dynamic Observatory Atmospheric Imaging Assembly
(SDO/AIA), and the Multichannel Subtractive Double Pass spectrograph (MSDP) in
the Meudon Solar Tower. Aims. The aim of this work is to study the dynamics of
the prominence fine structures in multiple wavelengths to understand their
formation. Methods. The spectrographs IRIS and MSDP provided line profiles with
a high cadence in Mg II and in Halpha lines. Results. The magnetic field is
found to be globally horizontal with a relatively weak field strength (8-15
Gauss). The Ca II movie reveals turbulent-like motion that is not organized in
specific parts of the prominence. On the other hand, the Mg II line profiles
show multiple peaks well separated in wavelength. Each peak corresponds to a
Gaussian profile, and not to a reversed profile as was expected by the present
non-LTE radiative transfer modeling. Conclusions. Turbulent fields on top of
the macroscopic horizontal component of the magnetic field supporting the
prominence give rise to the complex dynamics of the plasma. The plasma with the
high velocities (70 km/s to 100 km/s if we take into account the transverse
velocities) may correspond to condensation of plasma along more or less
horizontal threads of the arch-shape structure visible in 304 A. The steady
flows (5 km/s) would correspond to a more quiescent plasma (cool and
prominence-corona transition region) of the prominence packed into dips in
horizontal magnetic field lines. The very weak secondary peaks in the Mg II
profiles may reflect the turbulent nature of parts of the prominence.Comment: 15 pages, 14 figure
Heat capacity anomaly at the quantum critical point of the Transverse Ising Magnet CoNb_2O_6
The transverse Ising magnet Hamiltonian describing the Ising chain in a
transverse magnetic field is the archetypal example of a system that undergoes
a transition at a quantum critical point (QCP). The columbite CoNbO is
the closest realization of the transverse Ising magnet found to date. At low
temperatures, neutron diffraction has observed a set of discrete collective
spin modes near the QCP. We ask if there are low-lying spin excitations
distinct from these relatively high energy modes. Using the heat capacity, we
show that a significant band of gapless spin excitations exists. At the QCP,
their spin entropy rises to a prominent peak that accounts for 30 of the
total spin degrees of freedom. In a narrow field interval below the QCP, the
gapless excitations display a fermion-like, temperature-linear heat capacity
below 1 K. These novel gapless modes are the main spin excitations
participating in, and affected, by the quantum transition.Comment: 14 pages total, 8 figure
Possible observation of phase separation near a quantum phase transition in doubly connected ultrathin superconducting cylinders of aluminum
The kinetic energy of superconducting electrons in an ultrathin, doubly
connected superconducting cylinder, determined by the applied flux, increases
as the cylinder diameter decreases, leading to a destructive regime around
half-flux quanta and a superconductor to normal metal quantum phase transition
(QPT). Regular step-like features in resistance vs. temperature curves taken at
fixed flux values were observed near the QPT in ultrathin Al cylinders. It is
proposed that these features are most likely resulted from a phase separation
near the QPT in which normal regions nucleate in a homogeneous superconducting
cylinder.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Characteristics of light charged particle emission in the ternary fission of 250Cf and 252Cf at different excitation energies
The emission probabilities and the energy distributions of tritons, α and ^6He particles emitted in the spontaneous ternary fission (zero excitation energy) of ^250Cf and ^252Cf and in the cold neutron induced fission (excitation energy ≈ 6.5 MeV) of ^249Cf and 251Cf are determined. The particle identification was done with suited ΔE-E telescope detectors, at the IRMM (Geel, Belgium) for the spontaneous fission and at the ILL (Grenoble, France) for the neutron induced fission measurements. Hence particle emission characteristics of the fissioning systems ^250Cf and ^252Cf are obtained at zero and at about 6.5 MeV excitation energies. While the triton emission probability is hardly influenced by the excitation energy, the ^4He and ^6He emission probability in spontaneous fission is higher than for neutron induced fission. This can be explained by the strong influence of the cluster preformation probability on the ternary particle emission probability
- …