1,023 research outputs found

    An XPS Study of the Interaction of Ultrathin Cu Films with Pd(111)

    Full text link

    Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Get PDF
    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes

    Overview of the Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT): mechanistic chamber studies on the oxidation of biogenic compounds

    Get PDF
    The Focused Isoprene eXperiment at the California Institute of Technology (FIXCIT) was a collaborative atmospheric chamber campaign that occurred during January 2014. FIXCIT is the laboratory component of a synergistic field and laboratory effort aimed toward (1) better understanding the chemical details behind ambient observations relevant to the southeastern United States, (2) advancing the knowledge of atmospheric oxidation mechanisms of important biogenic hydrocarbons, and (3) characterizing the behavior of field instrumentation using authentic standards. Approximately 20 principal scientists from 14 academic and government institutions performed parallel measurements at a forested site in Alabama and at the atmospheric chambers at Caltech. During the 4 week campaign period, a series of chamber experiments was conducted to investigate the dark- and photo-induced oxidation of isoprene, α-pinene, methacrolein, pinonaldehyde, acylperoxy nitrates, isoprene hydroxy nitrates (ISOPN), isoprene hydroxy hydroperoxides (ISOPOOH), and isoprene epoxydiols (IEPOX) in a highly controlled and atmospherically relevant manner. Pinonaldehyde and isomer-specific standards of ISOPN, ISOPOOH, and IEPOX were synthesized and contributed by campaign participants, which enabled explicit exploration into the oxidation mechanisms and instrument responses for these important atmospheric compounds. The present overview describes the goals, experimental design, instrumental techniques, and preliminary observations from the campaign. This work provides context for forthcoming publications affiliated with the FIXCIT campaign. Insights from FIXCIT are anticipated to aid significantly in interpretation of field data and the revision of mechanisms currently implemented in regional and global atmospheric models

    Superhero comics and the digital communications circuit: a case study of <i>Strong Female Protagonist</i>

    Get PDF
    This article examines the ongoing superhero webcomic Strong Female Protagonist (2012-present), by Brannon Lee Mulligan and Molly Ostertag and employs it as a case study to analyse the new communications circuit created by the digital production and delivery of comics. It adopts a perspective drawn from Book History to frame the communication model of print comics and to evaluate how webcomics such as Strong Female Protagonist redefine the role of readers, authors and publishers

    Conversion of hydroperoxides to carbonyls in field and laboratory instrumentation: Observational bias in diagnosing pristine versus anthropogenically controlled atmospheric chemistry

    Get PDF
    Atmospheric volatile organic compound (VOC) oxidation mechanisms under pristine (rural/remote) and urban (anthropogenically-influenced) conditions follow distinct pathways due to large differences in nitrogen oxide (NO_x) concentrations. These two pathways lead to products that have different chemical and physical properties and reactivity. Under pristine conditions, isoprene hydroxy hydroperoxides (ISOPOOHs) are the dominant first-generation isoprene oxidation products. Utilizing authentic ISOPOOH standards, we demonstrate that two of the most commonly used methods of measuring VOC oxidation products (i.e., gas chromatography and proton transfer reaction mass spectrometry) observe these hydroperoxides as their equivalent high-NO isoprene oxidation products – methyl vinyl ketone (MVK) and methacrolein (MACR). This interference has led to an observational bias affecting our understanding of global atmospheric processes. Considering these artifacts will help close the gap on discrepancies regarding the identity and fate of reactive organic carbon, revise our understanding of surface-atmosphere exchange of reactive carbon and SOA formation, and improve our understanding of atmospheric oxidative capacity

    Formation of large (?100 ?m) ice crystals near the tropical tropopause

    No full text
    International audienceRecent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (?100 ?m length), thin (aspect ratios of ?6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (?1). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from 3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (?10:1), then H2O concentrations toward the low end of the measurement range (?2?2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm s?1 to loft the crystals in the tropopause region. These calculations would seem to imply that the measurements indicating water vapor concentrations less than 2 ppmv are implausible, but we cannot rule out the possibility that higher humidity prevailed upstream of the aircraft measurements and the air was dehydrated by the cloud formation. Simulations of the cloud formation with a detailed model indicate that homogeneous freezing should generate ice concentrations larger than the observed concencentrations (20 L?1), and even concentrations as low as 20 L?1 should have depleted the vapor in excess of saturation and prevented growth of large crystals. It seems likely that the large crystals resulted from ice nucleation on effective heterogeneous nuclei at low ice supersaturations. Improvements in our understanding of detailed cloud microphysical processes require resolution of the water vapor measurement discrepancies in these very cold, dry regions of the atmosphere
    corecore