4,116 research outputs found

    A Statistical Mechanical Load Balancer for the Web

    Full text link
    The maximum entropy principle from statistical mechanics states that a closed system attains an equilibrium distribution that maximizes its entropy. We first show that for graphs with fixed number of edges one can define a stochastic edge dynamic that can serve as an effective thermalization scheme, and hence, the underlying graphs are expected to attain their maximum-entropy states, which turn out to be Erdos-Renyi (ER) random graphs. We next show that (i) a rate-equation based analysis of node degree distribution does indeed confirm the maximum-entropy principle, and (ii) the edge dynamic can be effectively implemented using short random walks on the underlying graphs, leading to a local algorithm for the generation of ER random graphs. The resulting statistical mechanical system can be adapted to provide a distributed and local (i.e., without any centralized monitoring) mechanism for load balancing, which can have a significant impact in increasing the efficiency and utilization of both the Internet (e.g., efficient web mirroring), and large-scale computing infrastructure (e.g., cluster and grid computing).Comment: 11 Pages, 5 Postscript figures; added references, expanded on protocol discussio

    The protective layer of biofilm:A repellent function for a new class of amphiphilic proteins

    Get PDF
    Bacteria can survive harsh conditions when growing in complex communities of cells known as biofilms. The matrix of the biofilm presents a scaffold where cells are attached to each other and to the surface. The biofilm matrix is also a protective barrier that confers tolerance against various antimicrobial agents. In this issue of Molecular Microbiology, Kobayashi and Iwano (2012) show that the liquid permeability of Bacillus subtilis biofilms is determined by a small secreted protein, i.e. BslA (formerly called YuaB). BslA is important for the proper development of biofilms, but unlike exopolysaccharide and TasA, is not directly involved in cell cluster formation, and is synthesized following the production of exopolysaccharide and amyloid fibres. The amphiphilic BslA protein forms a polymer in vitro and localizes in vivo to the surface of the biofilm. The microstructures of the biofilm wrinkles are reduced in the bslA mutant strain and the liquid repellency of the biofilm surface is diminished. Exogenously added BslA42181 protein complements the bslA mutation and restores not only water repellency, but also the formation of aerial structures. This study demonstrates that amphiphilic proteins have an important role in liquid repellency of biofilms and it suggests that these polymers contribute to antimicrobial resistance

    Diphoton Signals for Large Extra Dimensions at the Tevatron and CERN LHC

    Get PDF
    We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza--Klein gravitons can significantly enhance this processes provided the quantum gravity scale (MSM_S) is in the TeV range. We studied in detail the subprocesses qqˉγγq \bar{q} \to \gamma \gamma and ggγγg g \to \gamma \gamma taking into account the complete Standard Model and graviton contributions as well as the unitarity constraints. We show that the Tevatron Run II will be able to probe MSM_S up to 1.5--1.9 TeV at 2σ\sigma level, while the LHC can extend this search to 5.3--6.7 TeV, depending on the number of extra dimensions

    On Languages Accepted by P/T Systems Composed of joins

    Full text link
    Recently, some studies linked the computational power of abstract computing systems based on multiset rewriting to models of Petri nets and the computation power of these nets to their topology. In turn, the computational power of these abstract computing devices can be understood by just looking at their topology, that is, information flow. Here we continue this line of research introducing J languages and proving that they can be accepted by place/transition systems whose underlying net is composed only of joins. Moreover, we investigate how J languages relate to other families of formal languages. In particular, we show that every J language can be accepted by a log n space-bounded non-deterministic Turing machine with a one-way read-only input. We also show that every J language has a semilinear Parikh map and that J languages and context-free languages (CFLs) are incomparable

    Improvement of antitumor therapies based on vaccines and immune-checkpoint inhibitors by counteracting tumor-immunostimulationw

    Get PDF
    Immune-checkpoint inhibitors and antitumor vaccines may produce both tumor-inhibitory and tumor-stimulatory effects on growing tumors depending on the stage of tumor growth at which treatment is initiated. These paradoxical results are not necessarily incompatible with current tumor immunology but they might better be explained assuming the involvement of the phenomenon of tumor immunostimulation. This phenomenon was originally postulated on the basis that the immune response (IR) evoked in Winn tests by strong chemical murine tumors was not linear but biphasic, with strong IR producing inhibition and weak IR inducing stimulation of tumor growth. Herein, we extended those former observations to weak spontaneous murine tumors growing in pre-immunized, immune-competent and immune-depressed mice. Furthermore, we demonstrated that the interaction of specifical T cells and target tumor cells at low stimulatory ratios enhanced the production of chemokines aimed to recruit macrophages at the tumor site, which, upon activation of toll-like receptor 4 and p38 signaling pathways, would recruit and activate more macrophages and other inflammatory cells which would produce growth-stimulating signals leading to an accelerated tumor growth. On this basis, the paradoxical effects achieved by immunological therapies on growing tumors could be explained depending upon where the therapy-induced IR stands on the biphasic IR curve at each stage of tumor growth. At stages where tumor growth was enhanced (medium and large-sized tumors), counteraction of the tumor-immunostimulatory effect with anti-inflammatory strategies or, more efficiently, with selective inhibitors of p38 signaling pathways enabled the otherwise tumor-promoting immunological strategies to produce significant inhibition of tumor growth.Fil: Chiarella, Paula. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Vermeulen, Mónica. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Montagna, Daniela R.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Vallecorsa, Pablo. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Strazza, Ariel Ramiro. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Meiss, Roberto P.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Bustuoabad, Oscar D.. Retired; ArgentinaFil: Ruggiero, Raúl A.. Academia Nacional de Medicina de Buenos Aires; ArgentinaFil: Prehn, Richmond T.. University Of Washington, Seattle

    Genetic Tool Development for a New Host for Biotechnology, the Thermotolerant Bacterium Bacillus coagulans

    Get PDF
    Bacillus coagulans has good potential as an industrial production organism for platform chemicals from renewable resources but has limited genetic tools available. Here, we present a targeted gene disruption system using the Cre-lox system, development of a LacZ reporter assay for monitoring gene transcription, and heterologous D-lactate dehydrogenase expression

    Effects of altered TatC proteins on protein secretion efficiency via the twin-arginine translocation pathway of Bacillus subtilis

    Get PDF
    Protein translocation via the Tat machinery in thylakoids and bacteria occurs through a cooperation between the TatA, TatB and TatC subunits, of which the TatC protein forms the initial Tat substrate-binding site. The Bacillus subtilis Tat machinery lacks TatB and comprises two separate TatAC complexes with distinct substrate specificities: PhoD is secreted by the TatAdCd complex, whereas YwbN is secreted by the TatAyCy complex. To study the role of the Gram-positive TatC proteins in Tat-dependent protein secretion efficiency, we applied several genetic engineering approaches to modify and analyse the B. subtilis TatCd and TatCy proteins. Cytoplasmic and transmembrane domain exchange between TatCd and TatCy resulted in stable chimeric proteins that were unable to secrete both known substrates of the B. subtilis Tat system. Site-directed mutagenesis of conserved residues in the N-terminal part of both TatC proteins revealed significant differences in the degree of importance of these residues between TatCd, TatCy and Escherichia coli TatC. In addition, two small C-terminal deletions in TatCy completely abolished YwbN translocation, indicating that this terminus is essential for Tat translocation activity. Important differences from previous observations for E. coli TatC and implications for substrate binding and translocation are discussed.

    Hjelmslev Geometry of Mutually Unbiased Bases

    Full text link
    The basic combinatorial properties of a complete set of mutually unbiased bases (MUBs) of a q-dimensional Hilbert space H\_q, q = p^r with p being a prime and r a positive integer, are shown to be qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p^2 and rank r. The q vectors of a basis of H\_q correspond to the q points of a (so-called) neighbour class and the q+1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic.Comment: 4 pages, 1 figure; extended list of references, figure made more illustrative and in colour; v3 - one more figure and section added, paper made easier to follow, references update
    corecore