119 research outputs found

    Tackling bovine TB

    Get PDF
    On 18 December Defra revealed that during 2018, 32,601 badgers were killed, bringing the total number slaughtered under licence since 2013 to almost 67,000.1 ‘Effectiveness’ claims relate not to the impact on cattle TB, but rather to the ability of the contracted shooters to kill sufficient badgers to satisfy their licence requirements, which they can hardly fail to reach given that target numbers are ‘adjusted’ by Natural England part-way through the culls according to the contractors’ progress. Sixty per cent of the badgers have been killed by ‘controlled shooting’, a method rejected by both the government’s Independent Expert Panel2 and the BVA3 because of animal welfare concerns. During 2018 Natural England directly monitored just 89 (0.43 per cent) of controlled shooting events. It is deplorable that the chief veterinary officer (CVO) continues to support the roll-out of a policy that permits controlled shooting, when veterinary organisations have condemned the method on animal welfare grounds. It is particularly concerning that the CVO appears to have deflected responsibility for humaneness to Natural England’s chief scientist who, as far as we are aware, has no background in animal welfare science. It is also unacceptable for government to attribute reductions in herd bovine TB (bTB) incidents over the first four years of culling in the original ‘pilot’ cull zones to its badger culling policy.4 Independent analysis of this and more recent data from the Gloucestershire pilot cull zone5 indicate that new herd incidence is rising sharply, with 22 herd breakdowns in the 12 months to September 2017 (an increase of 29.4 per cent when compared to the 17 breakdowns reported by APHA for the previous 12 months). Analysis of the 2018 figures indicates that both incidence and prevalence are now rising even faster, with a further 24 herd breakdowns occurring between 1 January and 5 December 2018. To date, the government and its officials cite data that are two years out of date, but have declined to comment on this emerging evidence that, far from resulting in a substantial disease control benefit, badger culls may be leading to a sharp increase in bTB in cattle. Natural England’s chief scientist and the UK’s CVO continue to endorse a failing and inhumane policy, bringing their offices into serious disrepute. We urge them, and the BVA, to reconsider their support for further badger culling, and instead focus on the actual cause of bTB’s epidemic spread – a cattle skin test with a sensitivity of only 50 per cent,6,7 and the ongoing problems associated with cattle movements and on-farm biosecurity

    Magnetotransport in a pseudomorphic GaAs/GaInAs/GaAlAs heterostructure with a Si delta-doping layer

    Full text link
    Magnetotransport properties of a pseudomorphic GaAs/Ga0.8In0.2As/Ga0.75Al0.25As heterostructure are investigated in pulsed magnetic fields up to 50 T and at temperatures of T=1.4 K and 4.2 K. The structure studied consists of a Si delta-layer parallel to a Ga0.8In0.2As quantum well (QW). The dark electron density of the structure is n_e=1.67x 10^16 m^-2. By illumination the density can be increased up to a factor of 4; this way the second subband in the Ga0.8In0.2As QW can become populated as well as the Si delta-layer. The presence of electrons in the delta-layer results in drastic changes in the transport data, especially at magnetic fields beyond 30 T. The phenomena observed are interpreted as: 1) magnetic freeze-out of carriers in the delta-layer when a low density of electrons is present in the delta-layer, and 2) quantization of the electron motion in the two dimensional electron gases in both the Ga0.8In0.2As QW and the Si delta-layer in the case of high densities. These conclusions are corroborated by the numerical results of our theoretical model. We obtain a satisfactory agreement between model and experiment.Comment: 23 pages, RevTex, 11 Postscript figures (accepted for Phys. Rev. B

    Theory of low frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers

    Full text link
    A theoretical model is presented for low-frequency magnetoelectric (ME) effects in bilayers of magnetostrictive and piezoelectric phases. A novel approach, the introduction of an interface coupling parameter k, is proposed for the consideration of actual boundary conditions at the interface. An averaging method is used to estimate effective material parameters. Expressions for ME voltage coefficients are obtained by solving elastostatic and electrostatic equations. We consider both unclamped and rigidly clamped bilayers and three different field orientations of importance: (i) longitudinal fields in which the poling field, bias field and ac fields are all parallel to each other and perpendicular to the sample plane; (ii) transverse fields for magnetic fields parallel to each other and perpendicular to electric fields, and (iii) in-plane longitudinal fields for all the fields parallel to each other and to the sample plane. The theory predicts a giant ME coupling for bilayers with cobalt ferrite (CFO), nickel ferrite (NFO), or lanthanum strontium manganite (LSMO) for the magnetostrictive phase and barium titanate (BTO) or lead zirconate titanate (PZT) for the piezoelectric phase.Comment: To be published in Physical Review B, August 1, 200

    Converting simulated total dry matter to fresh marketable yield for field vegetables at a range of nitrogen supply levels

    Get PDF
    Simultaneous analysis of economic and environmental performance of horticultural crop production requires qualified assumptions on the effect of management options, and particularly of nitrogen (N) fertilisation, on the net returns of the farm. Dynamic soil-plant-environment simulation models for agro-ecosystems are frequently applied to predict crop yield, generally as dry matter per area, and the environmental impact of production. Economic analysis requires conversion of yields to fresh marketable weight, which is not easy to calculate for vegetables, since different species have different properties and special market requirements. Furthermore, the marketable part of many vegetables is dependent on N availability during growth, which may lead to complete crop failure under sub-optimal N supply in tightly calculated N fertiliser regimes or low-input systems. In this paper we present two methods for converting simulated total dry matter to marketable fresh matter yield for various vegetables and European growth conditions, taking into consideration the effect of N supply: (i) a regression based function for vegetables sold as bulk or bunching ware and (ii) a population approach for piecewise sold row crops. For both methods, to be used in the context of a dynamic simulation model, parameter values were compiled from a literature survey. Implemented in such a model, both algorithms were tested against experimental field data, yielding an Index of Agreement of 0.80 for the regression strategy and 0.90 for the population strategy. Furthermore, the population strategy was capable of reflecting rather well the effect of crop spacing on yield and the effect of N supply on product grading

    BRIT1/MCPH1 links chromatin remodelling to DNA damage response

    Get PDF
    To detect and repair damaged DNA, DNA damage response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions1. ATP-dependent chromatin remodeling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair2–3. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA damage response protein that is mutated in human primary microcephaly4–8. We report here a previously unknown function of BRIT1 as a regulator of ATP-dependent chromatin remodeling complex SWI/SNF in DNA repair. Upon DNA damage, BRIT1 increases its interaction with SWI/SNF through the ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase of binding affinity provides a means by which SWI/SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation owing to reduced association of SWI/SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired survival from DNA damage. Our findings, therefore, identify BRIT1 as a key molecule that links chromatin remodeling with DNA damage response in the control of DNA repair, and its dysfunction contributes to human disease
    • 

    corecore