8,790 research outputs found

    Poisson Algebra of Wilson Loops and Derivations of Free Algebras

    Full text link
    We describe a finite analogue of the Poisson algebra of Wilson loops in Yang-Mills theory. It is shown that this algebra arises in an apparently completely different context; as a Lie algebra of vector fields on a non-commutative space. This suggests that non-commutative geometry plays a fundamental role in the manifestly gauge invariant formulation of Yang-Mills theory. We also construct the deformation of the loop algebra induced by quantization, in the large N_c limit.Comment: 20 pages, no special macros necessar

    PMH26 RESOURCE USE AMONG PATIENTS WITH SCHIZOPHRENIA IN 5 EUROPEAN COUNTRIES

    Get PDF

    On three dimensional coupled bosons

    Full text link
    This is a new version of the paper, which uses the same methods as in the previous version, but the model is now different. We study two complex scalar fields coupled through a quadratic interaction in 2+1 dimensions. We use the method of bilinears as suggested by Rajeev. The resulting classical theory is studied within the linear approximation and we show that there is a possible bound state for the composite type particles for a range of coupling constant strengths.Comment: 12 pages, to appear in JM

    On two dimensional coupled bosons and fermions

    Full text link
    We study complex bosons and fermions coupled through a generalized Yukawa type coupling in the large-N_c limit following ideas of Rajeev [Int. Jour. Mod. Phys. A 9 (1994) 5583]. We study a linear approximation to this model. We show that in this approximation we do not have boson-antiboson and fermion-antifermion bound states occuring together. There is a possibility of having only fermion-antifermion bound states. We support this claim by finding distributional solutions with energies lower than the two mass treshold in the fermion sector. This also has implications from the point of view of scattering theory to this model. We discuss some aspects of the scattering above the two mass treshold of boson pairs and fermion pairs. We also briefly present a gauged version of the same model and write down the linearized equations of motion.Comment: 25 pages, no figure

    Inter- and Intra-annual Effects of Lethal Removal on Common Raven Abundance in Nevada and California, USA

    Get PDF
    Populations of common ravens (Corvus corax; ravens) have increased rapidly within sagebrush (Artemisia spp.) ecosystems between 1960 and 2020. Although ravens are native to North America, their population densities have expanded to levels that negatively influence the population dynamics of other wildlife species of conservation concern, such as greater sage-grouse (Centrocercus urophasianus) and desert tortoises (Gopherus agassizii). For this reason, lethal removal, such as the application of the avicide DRC-1339, has been used to manage raven numbers at local scales and under certain circumstances. Because the relative effectiveness of DRC-1339 in reducing raven populations densities is not thoroughly understood, we completed 2 case studies using a before-after-control-impact experimental design of density estimates generated from point count data within a Bayesian hierarchical distance sampling framework. Specifically, we analyzed \u3e16,000 point count surveys collected during 2009–2019 and split into 2 study designs covering multiple field sites within the Great Basin region. The first experiment evaluated intra-annual changes in density by comparing before and after treatment time periods within a single breeding season for multiple treatment regions compared to 2 control regions. The other experiment focused on inter-annual differences by comparing time periods across years before and after the onset of annual avicide application for a single treatment region compared to multiple control regions. Our models estimated a 100% probability of decline in density relative to control sites for both the intra- and inter-annual model designs. At treatment sites, expected densities of ravens varied but were reduced by 43% (95% CRI: 33–49%) and 54% (95% CRI: 24–71%) according to intra- and inter-annual analyses, respectively, whereas densities increased by 42% (95% CRI: 27–60%) and 15% (95% CRI: -17 to 58%) at control sites. Although population densities were reduced with treatments, trends indicated that sustained effort would likely be needed to maintain densities at acceptable levels within regions of interest. Effectively reducing the adverse effects of raven populations on other native species likely will depend on a variety of targeted management actions such as improving habitat quality for prey species, possibly reducing ravens’ population density, and treating the cause of increased raven abundance to reduce future carrying capacity and prevent rebounds

    Penetration and intracellular uptake of poly(glycerol-adipate)nanoparticles into 3-dimensional brain tumour cell culture models

    Get PDF
    Nanoparticle (NP) drug delivery systems may potentially enhance the efficacy of therapeutic agents. It is difficult to characterise many important properties of NPs in vivo and therefore attempts have been made to use realistic in vitro multicellular spheroids instead. In this paper we have evaluated poly(glycerol-adipate) (PGA) NPs as a potential drug carrier for local brain cancer therapy. Various 3-dimensional (3-D) cell culture models have been used to investigate the delivery properties of PGA NPs. Tumour cells in 3-D culture showed a much higher level of endocytic uptake of NPs than a mixed normal neonatal brain cell population. Differences in endocytic uptake of NPs in 2-D and 3-D models strongly suggest that it is very important to use in vitro 3-D cell culture models for evaluating this parameter. Tumour penetration of NPs is another important parameter which could be studied in 3-D cell models. The penetration of PGA NPs through 3-D cell culture varied between models, which will therefore require further study to develop useful and realistic in vitro models. Further use of 3-D cell culture models will be of benefit in the future development of new drug delivery systems, particularly for brain cancers which are more difficult to study in vivo

    A New Basis Function Approach to 't Hooft-Bergknoff-Eller Equations

    Get PDF
    We analytically and numerically investigate the 't Hooft-Bergknoff-Eller equations, the lowest order mesonic Light-Front Tamm-Dancoff equations for U(N_C) and SU(N_C) gauge theories. We find the wavefunction can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest bound state. Its value is consistent with the precedent results.Comment: 16 pages, 3 figure

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte
    corecore