625 research outputs found

    Efficient and realistic device modeling from atomic detail to the nanoscale

    Full text link
    As semiconductor devices scale to new dimensions, the materials and designs become more dependent on atomic details. NEMO5 is a nanoelectronics modeling package designed for comprehending the critical multi-scale, multi-physics phenomena through efficient computational approaches and quantitatively modeling new generations of nanoelectronic devices as well as predicting novel device architectures and phenomena. This article seeks to provide updates on the current status of the tool and new functionality, including advances in quantum transport simulations and with materials such as metals, topological insulators, and piezoelectrics.Comment: 10 pages, 12 figure

    Implementation of Partial Initial Commissioning During the Elaboration and Construction Phase

    Get PDF
    This paper describes how manual methods for partial initial commissioning can be implemented during the elaboration and construction phase. The main purpose is to reduce the risk of exceeding the time schedule and the budgets of the construction of the building(s). The paper breaks down the superior building process into parts that can be connected to definite continuous procedures: 1. Continuous collection of operational instructions and maintenance documentation to secure the quality of the delivered products and to be able to perform mechanical check. 2. Splitting up of systems to perform commissioning tests (mechanical and functional) on sub system to discover errors as soon as possible. 3. Database for structuring data to get useful reports to follow up the constructors at the construction site

    Microfluidic Bioreactor for Dynamic Regulation of Early Mesodermal Commitment in Human Pluripotent Stem Cells

    Get PDF
    During development and regeneration, tissues emerge from coordinated sequences of stem cell renewal, specialization and assembly that are orchestrated by cascades of regulatory signals. The complex and dynamic in vivo milieu cannot be replicated using standard in vitro techniques. Microscale technologies now offer potential for conducting highly controllable and sophisticated experiments at biologically relevant scales, with real-time insights into cellular responses. We developed a microbioreactor providing time sequences of space-resolved gradients of multiple molecular factors in three-dimensional (3D) cell culture settings, along with a versatile, high-throughput operation and imaging compatibility. A single microbioreactor yields up to 120 data points, corresponding to 15 replicates of a gradient with 8 concentration levels. Embryoid bodies (EBs) obtained from human embryonic and induced pluripotent stem cells (hESC, hiPSC) were exposed to concentration gradients of Wnt3a, Activin A, BMP4 and their inhibitors, to get new insights into the early-stage fate specification and mesodermal lineage commitment. We were able to evaluate the initiation of mesodermal induction by measuring and correlating the gene expression profiles to the concentration gradients of mesoderm-inducing morphogens. We propose that the microbioreactor systems combining spatial and temporal gradients of molecular and physical factors to hESC and hiPSC cultures can form a basis for predictable in vitro models of development and disease

    Bacteriological contamination of egg products after thermal preservation processes

    Get PDF
    Research was carried out to define the hygienic propriety of thermally treated eggs, i.e. eggs treated at pasteurization temperatures and those stored frozen. The average values of the number of the bacteria in the pasteurized yolk and egg white were log 4.9 and 5.1, respectively, those in the frozen-pasteurized yolk and egg white were log 5.5 and 4.8 and in the frozen yolk and white were log 7.0 and 5.9. The contaminants Salmonella spp., Proteus spp., Staphylococcus aureus, Escherichia coli, Clostridium spp., Clostridium perfringens, Pseudomonas spp., Campylobacter jejuni and Yersinia enterocolitica were tested for 306 samples of pasteurized, frozen and pasteurized and frozen products of eggs, egg-yolks and egg-whites. Presence of Salmonella spp. in the pasteurized yolk was 12%, Clostridium spp. 16%, E. coli 16% and Proteus spp. 14%, but in the pasteurized egg white those bacteria were present in 10.8%, 15.3%, 13.8% and 10.0%. Staphylococcus aureus was isolated in yolk at 4.6 and in white 4.0% and Clostridium perfringens 4.0 and 1.5%, respectively. The bacteriological flora indicated that the degree of contamination of egg-products depends directly on the degree of initial contamination and correlates with the technological egg-treatment processes applied

    The effects of maternal anxiety during pregnancy on IGF2/H19 methylation in cord blood

    Get PDF
    Compelling evidence suggests that maternal mental health in pregnancy can influence fetal development. The imprinted genes, insulin-like growth factor 2 (IGF2) and H19, are involved in fetal growth and each is regulated by DNA methylation. This study aimed to determine the association between maternal mental well-being during pregnancy and differentially methylated regions (DMRs) of IGF2 (DMR0) and the IGF2/H19 imprinting control region (ICR) in newborn offspring. Maternal depression, anxiety and perceived stress were assessed at 28 weeks of pregnancy in the Barwon Infant Study (n = 576). DNA methylation was measured in purified cord blood mononuclear cells using the Sequenom MassArray Platform. Maternal anxiety was associated with a decrease in average ICR methylation (Delta = -2.23%;95% CI = -3.68 to -0.77%), and across all six of the individual CpG units in anxious compared with non-anxious groups. Birth weight and sex modified the association between prenatal anxiety and infant methylation. When stratified into lower ( 3530 g) birth weight groups using the median birth weight, there was a stronger association between anxiety and ICR methylation in the lower birth weight group (Delta = -3.89%;95% CI = -6.06 to -1.72%), with no association in the higher birth weight group. When stratified by infant sex, there was a stronger association in female infants (Delta = -3.70%;95% CI = -5.90 to -1.51%) and no association in males. All the linear regression models were adjusted for maternal age, smoking and folate intake. These findings show that maternal anxiety in pregnancy is associated with decreased IGF2/H19 ICR DNA methylation in progeny at birth, particularly in female, low birth weight neonates. ICR methylation may help link poor maternal mental health and adverse birth outcomes, but further investigation is needed

    Mechanistic Oral Absorption Modeling and Simulation for Formulation Development and Bioequivalence Evaluation: Report of an FDA Public Workshop

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138394/1/psp412204.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/138394/2/psp412204_am.pd

    Insulin, Ascorbate, and Glucose Have a Much Greater Influence Than Transferrin and Selenous Acid on the In Vitro Growth of Engineered Cartilage in Chondrogenic Media

    Get PDF
    The primary goal of this study was to characterize the response of chondrocyte-seeded agarose constructs to varying concentrations of several key nutrients in a chondrogenic medium, within the overall context of optimizing the key nutrients and the placement of nutrient channels for successful growth of cartilage tissue constructs large enough to be clinically relevant in the treatment of osteoarthritis (OA). To this end, chondrocyte-agarose constructs (phi4x2.34 mm, 30x106 cells/mL) were subjected to varying supplementation levels of insulin (0× to 30× relative to standard supplementation), transferrin (0x to 30x), selenous acid (0x to 10x), ascorbate (0x to 30x), and glucose (0x to 3x). The quality of resulting engineered tissue constructs was evaluated by their compressive modulus (E-Y), tensile modulus (E+Y), hydraulic permeability (k), and content of sulfated glycosaminoglycans (sGAG) and collagen (COL); DNA content was also quantified. Three control groups from two separate castings of constructs (1x concentrations of all medium constituents) were used. After 42 days of culture, values in each of these controls were, respectively, E-Y=518 plus or minus 78, 401 plus or minus 113, 236 plus or minus 67 kPa; E+Y=1420 plus or minus 430, 1140 plus or minus 490, 1240 plus or minus 280 kPa; k=2.3 plus or minus 0.8x10-3, 5.4 plus or minus 7.0x10-3, 3.3 plus or minus 1.3x10-3 mm4/N times s; sGAG=7.8 plus or minus 0.3, 6.3 plus or minus 0.4, 4.1 plus or minus 0.5%/ww; COL=1.3 plus or minus 0.2, 1.1 plus or minus 0.3, 1.4 plus or minus 0.4%/ww; and DNA=11.5 plus or minus 2.2, 12.1 plus or minus 0.6, 5.2 plus or minus 2.8 μg/disk. The presence of insulin and ascorbate was essential, but their concentrations may drop as low as 0.3x without detrimental effects on any of the measured properties; excessive supplementation of ascorbate (up to 30x) was detrimental to E-Y, and 30x insulin was detrimental to both E+Y and E-Y. The presence of glucose was similarly essential, and matrix elaboration was significantly dependent on its concentration (p less than 10-6), with loss of functional properties, composition, and cellularity observed at less than or equal to 0.3x; excessive glucose supplementation (up to 3x) showed no detrimental effects. In contrast, transferrin and selenous acid had no influence on matrix elaboration. These findings suggest that adequate distributions of insulin, ascorbate, and glucose, but not necessarily of transferrin and selenous acid, must be ensured within large engineered cartilage constructs to produce a viable substitute for joint tissue lost due to OA
    • …
    corecore