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Abstract

Secretory phospholipase A2 (sPLA2) is a critical component of insect and snake venoms and is secreted by mammalian
leukocytes during inflammation. Elevated secretory PLA2 concentrations are associated with autoimmune diseases and
septic shock. Many sPLA2’s do not bind to plasma membranes of quiescent cells but bind and digest phospholipids on the
membranes of stimulated or apoptotic cells. The capacity of these phospholipases to digest membranes of stimulated or
apoptotic cells correlates to the exposure of phosphatidylserine. In the present study, the ability of the phosphatidyl-L-
serine-binding protein, lactadherin to inhibit phospholipase enzyme activity has been assessed. Inhibition of human
secretory phospholipase A2-V on phospholipid vesicles exceeded 90%, whereas inhibition of Naja mossambica sPLA2

plateaued at 50–60%. Lactadherin inhibited 45% of activity of Naja mossambica sPLA2 and .70% of human secretory
phospholipase A2-V on the membranes of human NB4 leukemia cells treated with calcium ionophore A23187. The data
indicate that lactadherin may decrease inflammation by inhibiting sPLA2.
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Introduction

Secretory phospholipase A2 (sPLA2) is a nine-member family of

16–18 kDa enzymes with five to eight disulfide bonds. These

Ca2+-dependent enzymes hydrolyze sn-2 esters of phospholipid

molecules via an Asp-His diad [1–3]. The action of sPLA2 occurs

in two phases. First, the sPLA2 binds to a bilayer and then the

bound molecule continues predominantly in scooting mode,

cleaving multiple phospholipid substrate molecules without

dissociating from the membrane [4]. A substantial portion of

membrane and phospholipid specificity is exhibited in the initial

binding step. Thus, one mechanism of inhibiting activity of

secretory phospholipase A2 is via competition for the initial

membrane binding sites.

Of the family of sPLA2’s, three are of particular interest in

relation to inflammation, namely group IIA (hsPLA2-IIA), group

V and group X. Group IIA (also known as synovial sPLA2 or non-

pancreatic PLA2) is a secreted phospholipase originally found and

purified from synovial fluid of rheumatoid arthritis patients and

correlates with sepsis as well as autoimmune disease [5–10]. The

basic group IIA sPLA2’s are highly selective for anionic

phospholipids, with phosphatidylserine (PS) as an important

phospholipid target for efficient plasma membrane docking

[4,11,12]. Comparably, group V is closely related to group IIA

[13], but more neutral and maintains efficient docking via a

tryptophan in the docking interface [14,15]. In a mechanistically

similar fashion, group X exhibits more hydrophobic residues

allowing docking to and hydrolysis of zwitterionic phospholipids

like phosphatidylcholine and is largely unaffected by PS exposure

[16]. Together, the native charge as well as interface residues

largely account for the preferred substrate of these three enzymes,

with group V and X more readily binding and cleaving

zwitterionic substrates and generating the gateway molecule of

eicosanoid synthesis, arachidonic acid, as compared to group IIA

[17,18].

Although all three isoforms are relevant in inflammation, group

V sPLA2 is a good candidate as it depends on both PS dependent

and hydrophobic docking mechanisms while also yielding

substantial arachidonic acid on leukocyte cell membranes

[14,15,19,20]. As reviewed by Murakami and Lambeau, in vivo

studies on group V sPLA2 have expanded on the understanding of

the role of group V sPLA2 in inflammation [21,22]. Recent studies

have shown group V to act in a proinflammatory fashion as

expected from the higher arachidonic acid release as compared to

group IIA, with group V being upregulated in asthma and

showing a proinflammatory dose-response relationship upon

aerosol administration of sPLA2-V [23]. Group V knock-out mice

have however revealed an anti-inflammatory effect in a disease

and tissue specific manner with decreased phagocytosis of IgG-

opsonized sheep red blood cells is impaired in group V 2/2

macrophages [24] and a protective effect in K/BxN autoantibody-

induced inflammatory arthritis [10]. Taken together, these

findings indicate that inflammation originating from excessive

sPLA2 activity should be addressed in a disease and tissue specific

manner to avoid adverse effects and that a systemic therapeutic

seems unlikely [25–27].
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The inducing effect of PS on group IIA and V activity is

minimized in quiescent cells by aminophospholipid translocases

which keep PS sequestered on the inner leaflet of the plasma

membranes of quiescent cells making it inaccessible to secretory

phospholipase A2 [28–31]. PS-exposure on the outer leaflet of the

plasma membrane is observed starting in early apoptosis as a

response to cellular stress [32,33]. Accordingly, it has been

demonstrated that PS-exposure influences the production of

arachidonic acid and thereby synthesis of proinflammatory

downstream products like leukotrienes and prostaglandins [34–

37]. These cyto- and chemokines are an important part of the

inflammatory cascade leading to increased vascular permeability,

recruitment of leukocytes, modulation of clotting, and induced

mast cell chemokine production [38]. Thus, inflammatory

function of secretory phospholipase A2 is linked to cell stimulation

and apoptosis via PS exposure.

Studies of the relationship of PS exposure to activity of PLA2’s

can be aided by reagents that report PS exposure as well as those

that block PS, preventing access of PLA2. Accordingly, it has been

shown that lactadherin (also called MFG-E8) is a sensitive and

selective probe for PS, with the bovine ortholog being the most

extensively studied [39–42]. Bovine lactadherin is a 409 amino

acid protein that can be purified as two glycosylation variants (47

and 52 kDa) from bovine milk. This peripheral bound membrane

protein is composed of two N-terminal EGF-like domains, with an

integrin binding RGD sequence in the EGF-2 domain [40,43].

Tandem discoidin-like domains, C1 and C2, mediate membrane

binding. Lactadherin exhibits a strong affinity for PS-containing

membranes with a Kd,0.08–4 nM [42,43]. Lactadherin also

displays stereospecific binding to phosphatidyl-L-serine and

preference for convex membranes. Membrane binding of

lactadherin is not Ca2+-dependent which further improves its

value for monitoring and blocking exofacial PS [41,44–46]. There

are structural and functional similarities between the C1 and C2

domains of lactadherin and those of blood coagulation factors V

and VIII [39,41,42]. The structural homology of lactadherin with

factor V and factor VIII correlates with the capacity of lactadherin

to compete for PS-containing membrane binding sites and to

function as a potent anticoagulant [45]. The integrin and PS

binding enables lactadherin to operate as an opsonin, by bridging

apoptotic cells and vesicular debris, with exposed PS, to

phagocytic immune cells [47,48].

The research presented in this study aims at investigating the

extent to which lactadherin affects the activity of sPLA2.

Accordingly, activity was studied on vesicles of varying composi-

tion and size as well as on immortalized, human NB4 leukemia

cells. The results indicate that lactadherin inhibits the enzymatic

activity of phospholipase A2-V and, to a lesser extent, a snake

venom phospholipase A2.

Materials and Methods

Materials
Phosphatidylcholine (PC, egg yolk), phosphatidylethanolamine

(PE, egg yolk) and phosphatidyl-L-serine (PS porcine brain)

were purchased from Avanti Polar Lipids (AL, USA). 1,2-bis-

(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-unde-

canoyl)-sn-glycero-3-phosphocholine (bis-BODIPY FL C11-PC)

was from Life technologies (NY, USA). Fatty acid free bovine

serum albumin (BSA) was from EMD biosciences (Germany).

Human factor Xa and prothrombin were purchased from

Enzyme Research Laboratories (IN, USA), factor Va was

purchased from Haematologic Technologies Inc. (VT, USA),

and S-2238 thrombin chromogenic substrate from Diapharma

(OH, USA). Calcium ionophore A23187, propidium iodide (PI)

and Naja mossambica venom secretory phospholipase A2

(nmPLA2) were purchased from Sigma-Aldrich (MO, USA).

Recombinant human secretory phospholipase A2 group V

(hsPLA2-V) was purchased from Cayman chemical (MI, USA).

Bovine lactadherin was purified and labeled with fluorescein

isothiocyanate (FITC) as described previously [39,49]. Human

promyelocytic leukemia NB4 cells [50] were a generous gift

from Dr J. O’Kelly (Los Angeles, CA). Acrylodan-labeled

Intestinal Fatty Acid Binding Protein (ADIFAB) was purchased

from FFA Sciences, (CA, USA). All other chemicals (analytical

grade) were supplied by Sigma-Aldrich Corp. (St. Louis, Mo) or

Merck and Co. Inc (Whitehouse Station, NJ).

Lactadherin Purification
Lipid-free lactadherin was purified from fresh bovine milk

essentially as described previously [39]. Purity was checked by

SDS-PAGE showing the presence of only two bands at Mr 47 and

52 kDa corresponding to the two glycosylation variants, and by N-

terminal amino acid sequencing demonstrating more than 97

percent purity. Lactadherin concentration was determined by

measuring at A280 nm (e=77180 M21 cm21, calculated) and

stored at 280uC in 75 mM sodium phosphate, pH 7.0, 40 mM

KCl.

Phospholipid Vesicles
Sonicated small unilamellar and extruded large unilamellar

phospholipid vesicles (PLVs) of composition PS:PE:PC:bis-

BODIPY PC 4:20:75:1 were prepared as previously described

[41]. Phospholipid concentration was determined by elemental

phosphorous assay [51]. Vesicles were flash frozen in liquid

nitrogen, stored at 280uC, and thawed at 37uC within 2 hr of

experiments.

Spectrofluoroscopic Assay of Secretory PLA2 Activity on
Vesicles
The ability of lactadherin to inhibit sPLA2’s was determined

using various concentrations of purified lactadherin against

nmPLA2 and hsPLA2-V. Recombinant human phospholipase A2

group V was chosen due to the apparent involvement of hsPLA2–

V in eicosanoid synthesis. Phospholipase activity was measured on

a Peltier-thermostatted QMC-4-CW spectrofluorometer (PTI, NJ,

USA) with lex 488 nm and lem 515 nm. Slit widths were

0.5 mm for excitation and 1 mm for emission. Unless otherwise

indicated, phospholipid vesicles concentrations were 10 mM,

phospholipase concentration 0.06 U/ml, with enzyme kept on

ice and experiments done in duplicates. Measuring buffer was

HEPES (20 mM HEPES, 140 mM NaCl, 5 mM KCl, 1 mM

Na2HPO4, 1.5 mM CaCl2 and MgCl2–pH 7.4) for vesicle

experiments.

PLVs were allowed to equilibrate at 4uC in 150 ml measuring

buffer for 5 min in the dark prior to addition of sPLA2 and

lactadherin in 150 ml, pre-cooled to 2uC. Vesicles were added via

an injection port so that fluorescence monitoring was not

interrupted. Fluorescence intensity dropped with injection, in

proportion to dilution of the PLV. Fluorescence intensity was

recorded in kinetic mode and analyzed for 6 min. at 4uC
immediately following the dilution-related decrease in intensity.

Fluorescence data were normalized to the value immediately

following PLA2 injection for display and analysis. When adding

lactadherin, the maximum activity of the inhibited reaction is

expressed against the uninhibited maximum activity.

Lactadherin Inhibits Secretory Phospholipase A2
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Cell Culture
NB4 cells were maintained in RPMI 1640, 10% v/v fetal bovine

serum, 1% v/v 5,000 U/ml 5,000 mg/ml penicillin and strepto-

mycin (Life technologies, NY, USA) at 37uC, 5% CO2, humidified

atmosphere in a Symphony incubator (VWR, PA, USA). Optimal

growth rate and cell health was ensured by sub-culturing 24 hours

prior to experiments. All experiments were carried out between

passage 17 and 25. Washes were done in no phenol red no serum

RPMI1640 and centrifugation at 68 RCF with slow acceleration

and deceleration to avoid premature stress. Cells were treated with

calcium ionophore A23187 which in turn causes PS exposure on

the cytofacial surface [52,53]. This procedure has previously been

used successfully to mimic the PS exposure of apoptotic cells in

phospholipase assays [20,54,55] and produce a stressed phenotype

comparable to stimulated platelets [52]. A23187 was used at 6 mM
concentration and added to the cell suspension 10 minutes prior to

experiments. Optimal ionophore concentration and incubation

time were titrated by prothrombinase assay and FITC-labeled

lactadherin as described below. An alternate cell stress protocol

was employed to discount interactions between A23187 and

lactadherin. NB4 cells were stressed by incubation for 6 hours in

RPMI 1640 containing 40 mM etoposide before being washed

gently twice in 37uC no phenol red no serum RPMI 1640 as

previously described. Five times the original volume of cell

suspension was used (incubated cell suspension was 2 ml and wash

carried out using 2610 ml RPMI 1640) insuring that little

etoposide remained. The 40 mM etoposide concentration was

loosely based on Kaufmann et al. [56] and concentration and

incubation time verified by PI/FITC-lactadherin flow cytometry

as previously described.

Prothrombinase Assay of Cellular PS Exposure
PS exposure was measured using a two-step amidolytic substrate

assay for prothrombinase activity where the exposed membrane

PS is the limiting component of the prothrombinase complex [57].

The NB4 cells were gently washed, resuspended into reaction

buffer (No serum no phenol red RPMI1640, 0.005% v/v BSA)

and 100,000 cells added per well. A mixture of 0.5 nM Factor Xa

and 0.5 nM Factor Va in reaction buffer was added to each well

followed by substrate mix of 1 mM prothrombin and 1.5 mM

Ca2+. The reaction was incubated for 5 min at room temperature

and terminated by adding stop buffer (20 mM Tris/HCl - pH 7.0,

0.005% BSA and 16 mM EDTA) to each well. The chromogenic

substrate S-2238 was added in each well to 115 mM and the speed

of color generation was measured at 405 nm using a VersaMAX

microplate reader (Molecular Devices, CA, USA) in kinetic mode,

3 second intervals. The reaction rate was found using Softmax Pro

and an appropriate timeframe (R2.0.9).

Flow Cytometry Assay of Cellular PS Exposure
PI is traditionally used as an apoptosis marker [58], however as

the distinction between late stage apoptosis and necrosis can be

difficult, the combination of lactadherin and PI was used to allow

full control over the cell death pathway. Cell stress quantified by

PS exposure was monitored over time using FITC labeled

Lactadherin. Labeling was done as described previously [44,49]

with FITC-lactadherin and PI used as apoptosis marker in a

similar fashion as Vermes et al, Fadok et al a.o. [59–61]. 26106/

ml NB4 cells were washed gently in RPMI 1640 without serum or

phenol red and immediately treated using 6 mM A23187. Treated

cells were monitored for 90 minutes on a Becton Dickinson

LSRFortessa flow cytometer (BD biosciences, CA, USA) using

10 nM FITC-lactadherin and 2 mg/ml PI. Data processing was

done using FACS Diva and FCS Express.

Spectrofluoroscopic Assay of Secretory PLA2 Activity on
NB4 Cells
The rate of free fatty acid release by NB4 cells was monitored by

the fluorescence change of ADIFAB. Reactions were analyzed

with 100,000 cells per/ml in a 3:1 mix of HEPES-buffered saline

and RPMI1640 adjusted to 1.15 mM CaCl2. The reaction volume

was 300 ml in 363 mm micro square cell cuvette at 37uC.
Fluorometer settings were lex 380 nm and lem 440 nm with slit

widths of 0.5 mm and 1.3 mm for excitation and emission,

respectively. Activity was initiated by injecting 250 ml sPLA2 in

50 ml cell solution over approx. 3 s. The final sPLA2 concentra-

tion was 0.06 U/ml. Due to the very fast initial reaction rate of the

stressed NB4 cells, the maximum activity was determined by

obtaining the slope by linear regression and extrapolating back the

last measured value prior to injection, usually 3–4 seconds.

Dataprocessing and Statistical Analysis
Standardized curves were fitted to a double exponential

association model:

Y~Ymax dock � (1{e{Kdock�X )zYmax scoot � (1{e{Kscoot�X ) ð1Þ

Normalized curves (inhibition curves) were fitted to a double

exponential association model:

Y~Ymax dock � (1{e{Kdock�X )

zYmax scoot � (1{e{Kscoot�X )z1
ð2Þ

Initial rates versus substrate concentration was fitted to a

Michalis-Menten equation:

Y~
Vmax � X
KmzX

ð3Þ

As the reaction was very rapid on live cell membranes the initial

part of the curves were missing. The initial starting point of the

reaction curves was found by linear extrapolation back to the

original injection point. This was done to acquire the correct

maximal RFU value (DY) using:

Yext~
DY

DX
� (textract{tinject)z1 ð4Þ

All error bars display standard deviation and significance was

calculated using Welch’s t-test. Data processing was done in

Microsoft Excel 2010 and Graphpad Prism 5.

Results

We wished to determine whether lactadherin has the capacity

to inhibit activity of secretory PLA2. Accordingly, we developed

a real-time fluorescence assay and tested activity of a secretory

PLA2 from the venom of Naja mozambiqua (nmPLA2) toward

phospholipid vesicles containing 4% PS (Fig. 1). This membrane

composition is similar to the outer leaflet of apoptotic cells that

have undergone stimulation or stress [33,62]. Our results

indicated that nmPLA2 rapidly cleaves a fraction of the

fluorescent bis-BODIPY PC. At 37uC and at 25uC the

Lactadherin Inhibits Secretory Phospholipase A2
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fluorescence change approached completion within 5 s, making

it difficult to record the details. Thus, the experimental data

obtained for Figures 1–3 was obtained at 4uC, conditions under
which substrate cleavage occurred over 6 minutes. Addition of

lactadherin diminished the initial rate of substrate cleavage and

the plateau. Thus, lactadherin has the capacity to inhibit

activity of at least one secretory PLA2.

The relationship between nmPLA2 concentration and vesicle

concentration was explored in order to determine optimal

conditions for evaluating the inhibitory effect of lactadherin

(Fig. 2). The data were normalized to initial fluorescence to

emphasize the impact of varying phospholipid substrate with a

fixed phospholipase concentration. Results indicated that the

relative rate of substrate cleavage and the plateau are both

influenced by the initial phospholipid concentration (Fig. 2A).

Thus, initial phospholipase activity increased with substrate

concentration then slowed primarily in response to factor(s) other

than substrate depletion. This was explored by plotting the

combined Ymax obtained from a two-phase exponential association

fit (Eq. 1) versus phospholipid concentration (Fig. 2B). To verify

that the initial kinetic component was obeying Michaelis-Menten

kinetics under our experimental conditions, initial reaction rates

from 0 s to 5 s were measured and plotted against phospholipid

concentration (Fig. 2C) and fitted to a Michealis-Menten equation

(Eq. 3), R2 = 0.96. Similar curves were obtained with hsPLA2-V

(data not shown). Thus, under these conditions the number of

sPLA2 molecules/membrane phospholipid influences the total

substrate cleavage as well as the initial rate. These results indicate

the relationship between the parameters of the assay and the rate

of substrate cleavage, enabling more quantitative testing of the

inhibition by lactadherin. Further experiments were designed to

primarily affect the initial, rapid component of phospholipase

activity.

We tested the inhibitory activity of lactadherin toward human

secretory PLA2 (Fig. 3). The results indicated progressive

inhibition at increasing concentrations of lactadherin with greater

than 95% inhibition at 75 nM lactadherin on 4% PS SUV

(Fig. 3A). A direct comparison of the inhibitory capacity of

lactadherin toward nmPLA2 vs. hsPLA2-V confirmed that 75 nM

lactadherin inhibits approx. 50% nmPLA2 activity while inhibiting

greater than 95% hsPLA2-V activity on 4% PS SUV (Fig. 3B).

Because the binding of lactadherin and PLA2’s are both sensitive

to membrane curvature [41,63] we asked whether inhibition by

lactadherin differed on extruded vesicles, with lesser membrane

Figure 1. Cleavage of fluorescent phospholipid by nmPLA2 and
inhibition by lactadherin. Sonicated phospholipid vesicles, 10 mM,
of composition PS:PE:PC:bbPC 4:20:75:1 were pre-incubated for 15
minutes in PBS, pH 7.2 at 22uC with, or without, pure lipid-free bovine
lactadherin before addition to a quartz cuvette of 363645 mm. Vesicles
were incubated for 5 minutes at 4uC in the Peltier-thermostatted
sample chamber of the fluorometer before adding nmPLA2 to a final
concentration of 0.06 U/ml. Reaction curves are normalized to baseline
fluorescence intensity before addition of phospholipase as per Eq. 2.
doi:10.1371/journal.pone.0077143.g001

Figure 2. Relationship between PLA2 concentration, phospho-
lipid concentration, and phospholipase activity. (A) Varying
concentrations of sonicated vesicles of composition PS:PE:PC:bbPC
4:20:75:1 were allowed to equilibrate at 4uC for 5 minutes before adding
0.125 U/ml nmPLA2. The resulting curve replicates were standardized
and fitted to a two-phase exponential association model (Eq. 1) and
solved for global rate constants (fitted curves). (B) Total Ymax obtained
from fitted curves was plotted against phospholipid concentrations and
fitted to a Michaelis-Menten equation. (C) The initial reaction rate was
obtained from the original datasets using linear regression from 0–5
seconds and plotted against phospholipid concentration. A Michaelis-
Menten equation was fitted to the data and of high fit quality. The
results indicate a saturable dose-response relationship. Experiments at
each phospholipid or phospholipase concentration were performed a
minimum of two times, and values averaged.
doi:10.1371/journal.pone.0077143.g002

Lactadherin Inhibits Secretory Phospholipase A2
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convexity than sonicated vesicles (Fig. 3C). The relative fluores-

cence increase, in response to PLA2, with extruded vesicles was

approx. 3-fold greater than with sonicated vesicles, possibly related

to a greater degree of self-quenching by the BODIPY acyl chains

in the more tightly packed membrane cores of extruded vesicles.

Lactadherin inhibition studies indicated that lower concentrations

inhibit hsPLA2-V on extruded vesicles with IC50,4 nM vs.

18 nM on sonicated vesicles. The IC50 for nmPLA2 was also

lower, by approx. 2-fold on extruded vesicles. These results

indicate that lactadherin inhibits hsPLA2-V more effectively than

nmPLA2 and that the inhibitory concentration of lactadherin is

lower for vesicles with a lower degree of curvature.

We asked whether lactadherin might also inhibit PLA2 activity

on cell membranes (Fig. 4). For these experiments we utilized the

human promyelocytic leukemia cell line, NB4. These cells were

treated with 6 mM A23187 for 10 min at 22uC to stimulate pre-

apoptotic PS exposure (Fig. 4A). Prothrombinase activity support-

ed by the treated cells increased 3-fold compared to untreated

cells, indicating substantial PS exposure. As judged by flow

cytometry, these conditions resulted in 62% of cells meeting our

criteria of substantial PS exposure without permeability to

propidium iodide, while only 14% were apoptotic. To ensure

that membrane structure, and consequent susceptibility to PLA2

were not perturbed by the assay we utilized a different assay to

detect phospholipase activity. In this assay, the fluorescence of

fatty acid binding protein (ADIFAB) changes on binding to free

fatty acids that diffuse from the membrane after cleavage by PLA2.

The assay was controlled by measuring the rate of free fatty acid

release from cells that were quiescent, stressed, and stressed with

300 nM lactadherin in the absence of added PLA2. The rate of

free fatty acid release was low in the untreated cells and was not

significantly increased by addition of nmPLA2 or hsPLA2-V

(Fig. 4B and 4C - lower curves). Addition of nmPLA2 or hsPLA2 to

A23187 treated cells increased the rate of free fatty acid release by

6 and 13 fold respectively (top curves), indicating that these

enzymes have little activity on quiescent cells and much greater

activity on the membranes of pre-apoptotic cells. The rate of

phospholipid cleavage was faster with nmPLA2 than with hsPLA2-

V, but hsPLA2-V displayed a larger increase of the initial reaction

rate on highly PS exposing cells compared to nmPLA2. On

stressed cells we observed a decrease in fluorescence after 20–40

seconds attributable to reacylation of free fatty acids as previously

described (not shown) [64,65].

Addition of lactadherin reduced the rate of free fatty acid

release (compare Fig. 4B and 4C top and middle curves). The

initial rate of nmPLA2 activity was reduced 45% by 300 nM

lactadherin on pre-apoptotic NB4 cells (Fig. 4D). Phospholipase

activity of hsPLA2-V on these cells was reduced by.70% (Fig. 4E).

To eliminate the interaction of lactadherin with A23187 as a cause

of the observed inhibition, cells were stressed with 40 mM
etoposide for 6 hours and run in a similar fashion. As seen in

Figure 4F, 300 nM lactadherin inhibited hsPLA2-V to much the

same extent as observed using ionophore treated cells. Adverse

effects like degradation or endocytosis was discounted by doing fast

runs on a Flex station 3 microplate reader using master enzyme

mixes (see figure S1 and S2). The inhibitory effect of lactadherin

on nmPLA2 and hsPLA2-V on plasma membranes exhibited

similar characteristics as those observed using small unilamellar

and large unilammellar vesicles with hsPLA2-V being more

readily inhibited. This indicates the validity of using 4% PS

vesicles as a reasonable pre-apoptotic plasma membrane model.

Together these results indicate that secretory phospholipase A2

activity is increased on pre-apoptotic cells and that lactadherin

inhibits the activity of the more promiscuous nmPLA2 as well as

the more fastidious hsPLA2-V on pre-apoptotic human leukemia

cell membranes.

Figure 3. Lactadherin inhibition of hsPLA2 vs. nmPLA2. (A)
Various concentrations of lactadherin were added to 10 mM phospho-
lipid vesicles with composition as described for Fig. 2. Phospholipid
vesicles were preincubated for 15 minutes with bovine lactadherin
before transfer to a quartz cuvette and cooling for 5 minutes at 4uC.
hsPLA2-V was added to a final concentration of 0.06 U/ml and the
activity monitored continuously as fluorescence emission at 515 nm.
Data were fitted to a double exponential model and fitted globally as
described in Fig. 2. Addition of lactadherin diminished both compo-
nents of enzyme activity. (B) Normalized net phospholipase activity on
sonicated PLVs after 400 s 6 SD are plotted as a function of lactadherin
concentration with uninhibited Ymax total as reference. (C) Experiments
like those in panel 3A were performed utilizing extruded PLV rather
than sonicated vesicles (not shown). Normalized phospholipase activity
after 400 s 6 SD are plotted as function of lactadherin concentration.
As seen in all panels, the PS sensitive hsPLA2-V is more readily blocked
by lactadherin. All experiments were performed at least twice and
results averaged for data displayed in panels B and C.
doi:10.1371/journal.pone.0077143.g003
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Discussion

We have shown that lactadherin inhibits activity of secretory

phospholipase A2 on phospholipid vesicles and on cell membranes.

The degree of inhibition on phospholipid vesicles is lower for the

snake venom PLA2 than for a human secretory PLA2 associated

with inflammation. Susceptibility to PLA2 inhibition by lactad-

herin is also influenced by membrane composition and curvature.

These properties correlate to inhibition of phospholipase activity

on a human leukemia cell line following cell treatment with

A23187. Thus, lactadherin can inhibit secretory phospholipases A2

on the membranes of pre-apoptotic cells.

Our studies are in general agreement with studies indicating

that some phospholipase A2’s can be partially inhibited by annexin

A5 [66]. While the methodologies and the degree of phospholipid

digestion differed substantially between the prior reports and our

current report, our results are in qualitative agreement with the

finding that PS-binding membrane proteins can inhibit the

binding of phospholipases A2. It is noteworthy that the PS binding

of lactadherin is calcium independent, and phosphatidyl-L-serine

specific, in contrast to Annexin A5. These properties, and the

incomplete overlap between binding sites for lactadherin and

annexin V, likely contribute to the efficacy of lactadherin.

Our studies are in agreement with prior observations that

quiescent cell membranes support little or no activity of secretory

Figure 4. Inhibitory activity of lactadherin toward sPLA2’s on human leukemia cells. (A) NB4 cells were treated with 6 mM A23187 for 10
minutes at 22uC prior to addition of phospholipases. This treatment resulted in 61.6% pre-apoptotic cells. Phospholipase activity was detected as
release of free fatty acids using the ADIFAB reagent. Each curve was run as a set in quadruplicates using a single mixture of ADIFAB and PLA2. Curves
were run in separate sets. The initial reaction rates for nmPLA2 and hsPLA2-V were calculated by linear regression to the first 5 and 15 seconds
respectively, were r2 = 0.85–0.95. (B) 0.06 U/ml nmPLA2 phospholipase activity on quiescent, stressed cells and stressed with 300 nM lactadherin were
measured. Lactadherin was added to the cell mix immediately before adding the ionophore, proceeding with 10 minute incubation. Control curves
from similar treated cells without added enzyme were subtracted as background and extrapolated Y values at injection point found using Eq. 3. Sum
curves of quadruplicate sets are displayed (C) The experiment was repeated as in panel B using 0.06 U/ml hsPLA2-V. The initial reaction rate was
calculated the same way as panel B. See panel 4D and 4E for quadruplicate results of nmPLA2 and hsPLA2-V respectively, SD displayed with
*denoting p,0.05 and **denoting p,0.001. To discount any adverse interactions between A23187 and lactadherin, cells were stressed using 40 mM
etoposide as described in materials and methods. As seen in Figure 4F, inhibition of hsPLA2-V to near quiescent levels by addition of 300 nM
lactadherin was observed, producing very similar inhibition ratios as found when using the quick, A23187 and lactadherin co-incubation protocol.
Statistical significance using a one-tailed T-test assuming unequal variance showed a significance of p,0.03.
doi:10.1371/journal.pone.0077143.g004
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phospholipases A2 [17,34,55]. Prior studies indicated these

enzymes are active on the membranes of apoptotic cells [64,67].

Part of the explanation is likely that PS is sequestered on the inner

leaflet of the resting cell membranes [29,68]. Cellular stress

induces phospholipid scrambling, which in turn exposes phospha-

tidylserine at the exofacial surface [34,69]. Experiments show that

PS exposing cells are target for inflammation-related secretory

phospholipases like group IIA [4,20] and V [20]. Exofacial PS

exposure recruits immune cells from increased eicosanoid

production via secretory phospholipase A2’s digestion of the

plasma membrane and aids macrophage phagocytosis directly

[32,70,71].

Secretory PLA2’s achieve efficacy via a 2-step mechanism [72].

First they bind to suitable sites on a membrane and subsequently

cleave the sn-2 bonds of successive phospholipid molecules without

dissociation from the membrane and re-binding [4,73]. Formation

of membrane binding sites for secretory PLA2 IIA and V is

increased by the content of negatively charged phospholipid

molecules and increased by convex curvature [65]. Binding sites

for lactadherin are proportional to membrane phosphatidylserine,

the major negatively charged membrane phospholipid, and

increased by convex membrane curvature [41], i.e. formation of

membrane binding sites for lactadherin is sensitive to parameters

that overlap with PLA2’s. These similarities lead us to hypothesize

that lactadherin primarily inhibits the initial binding step of

secretory PLA2’s. As such, the results suggest that the membrane

binding sites for nmPLA2, hsPLA2-V, and lactadherin overlap but

are not identical.

The findings in this study identify a new potential anti-

inflammatory mechanism for lactadherin. The primary, estab-

lished anti-inflammatory mechanism relates to its mechanism as

an opsonin for apoptotic cells. Engulfment by lactadherin-coated

cells promotes an anti-inflammatory response by phagocytes

[74,75]. A second potential anti-inflammatory mechanism is the

capacity to inhibit blood coagulation complexes on the mem-

branes of cells that are stimulated, stressed, or apoptotic [45]. This

study demonstrates that lactadherin may also modulate inflam-

mation through decreasing the activity of secretory phospholipase

A2’s. It appears possible that lactadherin may inhibit sPLA2’s on

the same cells in which it is mediating anti-inflammatory

phagocytosis during stress or apoptosis. Alternatively, secreted

lactadherin may bind to cells that are remote from phagocytes and

inhibit phospholipase activity independently from phagocytosis. In

the present study we utilized small and large unilamellar vesicles

and stressed NB4 cells to quantify the effect of lactadherin on

nmPLA2 and hsPLA2-V activity. PI and FITC-lactadherin was

used to monitor how many cells were in the different phases of

apoptosis. PI staining (membrane permeability) in conjunction

with PS exposure (stress and early apoptosis indicator) allows

differentiation between stress/early apoptosis, late stage apoptosis/

necrosis, cell debris and quiescent cells when combined with

forward and side scatter information [76–78]. Stressed/early

apoptotic cells stain for PS exposure, but not with PI and late stage

apoptotic cells stain for PS and PI. As seen in figure 4, the primary

part (,62%) of the cell population is pre-apoptotic (PS positive, PI

negative). The distinction between late stage apoptosis and

necrosis can be difficult and the measured ,14% PI/FITC-

lactadherin positive cells likely indicates the death rate of NB4 cells

subcultured 24 h before their use. However inhibiting phospho-

lipases on necrotic cells enforces our conclusion, that lactadherin

could function as an anti-inflammatory agent. In the presented

experiments we observed efficient inhibition at 300 nM (14.1 mg/
mL) lactadherin. This concentration is higher than that usually

found in serum with 3–17 ng/ml for healthy adults [79,80].

Several pathologic conditions have shown increased serum

concentrations 3–40 ng/ml for childhood-onset systemic lupus

patients and 13–33 ng/ml for type 2 diabetes mellitus [79,80].

Local concentrations in the microenvironment surrounding

lactadherin secreting phagocytes would however be expected to

be substantially higher. Furthermore, the strong preference of

sPLA2 group IIA to PS might be exploited to preferentially inhibit

group IIA in rheumatoid arthritis [10]. Further studies, utilizing

lactadherin fragments that mediate anti-sPLA2 activity indepen-

dent from pro-phagocytic activity will be required to distinguish

the importance of the anti-PLA2 activity in inflammation. These

studies may indicate whether lactadherin, or a molecule with

similar membrane binding properties, may have pharmaceutical

value as an anti-sPLA2 anti-inflammatory agent.

In summary, we show that lactadherin inhibits venom (group –

IA) and inflammatory (group –V) secretory phospholipase on both

artificial 4% PS membranes and plasma membranes of pre-

apoptotic cells. Further studies will be required to probe the

inhibitory mechanism. Further studies will also be required to

determine whether sPLA2 inhibition is a physiologic mechanism of

lactadherin function or whether lactadherin, or a lactadherin-like

molecule, might be adaptable for therapeutic inhibition of

sPLA2’s.

Supporting Information

Figure S1 Results of nmPLA2 on NB4 cells as monitored
by ADIFAB. Initial experiments and optimization was done using

a temperature controlled FlexStation 3 plate reader (Molecular

Devices, Sunnyvale, CA). Cells were washed by gentle centrifu-

gation at 68 RCF with slow acceleration and deceleration to avoid

cell stress, followed by resuspension in 37uC no phenol red no

serum RPMI 1640. 6 mM A23187 was added to the cell

suspension in all samples and 300 nM lactadherin was added

with A23187 in inhibition studies. 100,000 cells was dispensed per

well and allowed to incubate for 10 minutes before addition of

freshly made nmPLA2 master mix to a total concentration of

0.06 U/ml. For each 96-well plate, a column of controls were run

to reference the cellular stress levels of the cells in the vial used for

each run. This was done to exclude effects by different handling.

Using a plate reader allowed the exclusion of any time related

effects like degradation of the enzyme, ionophore, ADIFAB or

similar and the total run time was 3 minutes for master mix

preparation and 30 seconds until the reaction rate plateau was

reached equalling less than 5 minutes total. As seen in figure S1,

unstressed NB4 cells exhibited little enzymatic activity as compare

to the A23187 stressed cells. Inhibiting nmPLA2 with lactadherin

displayed similar results as observed in the spectrofluorometer with

a reduction of the initial reaction rate to roughly half. In all plate

reader experiments, quadruplicates where recorded and SD

displayed, but the late onset of the first read (14 second delay)

and the 2 second data point interval provided less than ideal data

for intricate analysis, due to the partial lack of the initial reaction

rate slope. A change to a high resolution spectrofluorometer

system was done subsequently.

(TIFF)

Figure S2 Results of hsPLA2-V on NB4 cells as moni-
tored by ADIFAB. Experiments using hsPLA2-V were carried

out in an identical manner as the nmPLA2 experiments. Although

the same 0.06 U/ml enzyme concentration was used, hsPLA2-V

displayed less activity on stressed membranes as compared to

nmPLA2. This behavior was later confirmed in higher resolution

datasets (Fig. 4D and 4E). As seen in Figure S2, hsPLA2-V activity

were almost completely abolished on stressed cells, however SD

Lactadherin Inhibits Secretory Phospholipase A2

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77143



was larger than desired. Analyzing the data using a one-tailed T-

test assuming unequal variance showed a significance of p,0.026.

(TIFF)
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19. Muñoz NM, Kim YJ, Meliton AY, Kim KP, Han S-K, et al. (2003) Human

group V phospholipase A2 induces group IVA phospholipase A2-independent
cysteinyl leukotriene synthesis in human eosinophils. J Biol Chem 278: 38813–

38820. doi:10.1074/jbc.M302476200.

20. Olson ED, Nelson J, Griffith K, Nguyen T, Streeter M, et al. (2010) Kinetic

evaluation of cell membrane hydrolysis during apoptosis by human isoforms of

secretory phospholipase A2. J Biol Chem 285: 10993–11002. doi:10.1074/
jbc.M109.070797.

21. Murakami M, Taketomi Y, Girard C, Yamamoto K, Lambeau G (2010)

Emerging roles of secreted phospholipase A2 enzymes: Lessons from transgenic

and knockout mice. Biochimie 92: 561–582. doi:10.1016/j.biochi.2010.03.015.

22. Murakami M, Lambeau G (2013) Emerging roles of secreted phospholipase A2

enzymes: An update. Biochimie 95: 43–50. doi:10.1016/j.biochi.2012.09.007.
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36. Nevalainen TJ, Haapamäki MM, Grönroos JM (2000) Roles of secretory

phospholipases A(2) in inflammatory diseases and trauma. Biochim Biophys Acta

1488: 83–90.

37. Satake Y, Diaz BL, Balestrieri B, Lam BK, Kanaoka Y, et al. (2004) Role of

group V phospholipase A2 in zymosan-induced eicosanoid generation and

vascular permeability revealed by targeted gene disruption. J Biol Chem 279:

16488–16494. doi:10.1074/jbc.M313748200.

38. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid

biology. Science 294: 1871–1875. doi:10.1126/science.294.5548.1871.

39. Hvarregaard J, Andersen MH, Berglund L, Rasmussen JT, Petersen TE (1996)

Characterization of glycoprotein PAS-6/7 from membranes of bovine milk fat

globules. Eur J Biochem 240: 628–636.

40. Andersen MH, Graversen H, Fedosov SN, Petersen TE, Rasmussen JT (2000)

Functional analyses of two cellular binding domains of bovine lactadherin.

Biochemistry 39: 6200–6206.

41. Shi J, Heegaard CW, Rasmussen JT, Gilbert GE (2004) Lactadherin binds

selectively to membranes containing phosphatidyl-L-serine and increased

curvature. Biochimica et Biophysica Acta (BBA) - Biomembranes 1667: 82–

90. doi:10.1016/j.bbamem.2004.09.006.

42. Otzen DE, Blans K, Wang H, Gilbert GE, Rasmussen JT (2012) Lactadherin

binds to phosphatidylserine-containing vesicles in a two-step mechanism

sensitive to vesicle size and composition. Biochim Biophys Acta 1818: 1019–

1027. doi:10.1016/j.bbamem.2011.08.032.

Lactadherin Inhibits Secretory Phospholipase A2

PLOS ONE | www.plosone.org 8 October 2013 | Volume 8 | Issue 10 | e77143



43. Andersen MH, Berglund L, Rasmussen JT, Petersen TE (1997) Bovine PAS-6/7

binds alpha v beta 5 integrins and anionic phospholipids through two domains.
Biochemistry 36: 5441–5446. doi:10.1021/bi963119m.

44. Waehrens LN, Heegaard CW, Gilbert GE, Rasmussen JT (2009) Bovine

lactadherin as a calcium-independent imaging agent of phosphatidylserine
expressed on the surface of apoptotic HeLa cells. J Histochem Cytochem 57:

907–914. doi:10.1369/jhc.2009.953729.
45. Shi J, Gilbert GE (2003) Lactadherin inhibits enzyme complexes of blood

coagulation by competing for phospholipid-binding sites. Blood 101: 2628–2636.

doi:10.1182/blood-2002-07-1951.
46. Shi J, Pipe SW, Rasmussen JT, Heegaard CW, Gilbert GE (2008) Lactadherin

blocks thrombosis and hemostasis in vivo: correlation with platelet phosphati-
dylserine exposure. J Thromb Haemost 6: 1167–1174. doi:10.1111/j.1538-

7836.2008.03010.x.
47. Wu Y, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by

phagocytes: a view to a kill. Trends Cell Biol 16: 189–197. doi:10.1016/

j.tcb.2006.02.003.
48. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, et al. (2002)

Identification of a factor that links apoptotic cells to phagocytes. Nature 417:
182–187. doi:10.1038/417182a.

49. Shi J, Shi Y, Waehrens LN, Rasmussen JT, Heegaard CW, et al. (2006)

Lactadherin detects early phosphatidylserine exposure on immortalized
leukemia cells undergoing programmed cell death. Cytometry A 69: 1193–

1201. doi:10.1002/cyto.a.20345.
50. Lanotte M, Martin-Thouvenin V, Najman S, Balerini P, Valensi F, et al. (1991)

NB4, a maturation inducible cell line with t(15;17) marker isolated from a
human acute promyelocytic leukemia (M3). Blood 77: 1080–1086.

51. Chen PS (1956) Microdetermination of Phosphorus. Analytical chemistry

(Washington) 28: 1756–1758. doi:10.1021/ac60119a033.
52. Wolfs JLN, Comfurius P, Rasmussen JT, Keuren JFW, Lindhout T, et al. (2005)

Activated scramblase and inhibited aminophospholipid translocase cause
phosphatidylserine exposure in a distinct platelet fraction. CMLS, Cell Mol

Life Sci 62: 1514–1525. doi:10.1007/s00018-005-5099-y.

53. Clark SR, Thomas CP, Hammond VJ, Aldrovandi M, Wilkinson GW, et al.
(2013) Characterization of platelet aminophospholipid externalization reveals

fatty acids as molecular determinants that regulate coagulation. Proc Natl Acad
Sci U S A 110: 5875–5880. doi:10.1073/pnas.1222419110.

54. Boccellino M, Giovane A, Servillo L, Balestrieri C, Quagliuolo L (2002) Fatty
acid mobilized by the vascular endothelial growth factor in human endothelial

cells. Lipids 37: 1047–1052.

55. Nelson J, Francom LL, Anderson L, Damm K, Baker R, et al. (2012)
Investigation into the Role of Phosphatidylserine in Modifying the Susceptibility

of Human Lymphocytes to Secretory Phospholipase A2 using Cells Deficient in
the Expression of Scramblase. Biochim Biophys Acta 1818: 1196–1204.

doi:10.1016/j.bbamem.2012.01.005.

56. Kaufmann SH (1989) Induction of Endonucleolytic DNA Cleavage in Human
Acute Myelogenous Leukemia Cells by Etoposide, Camptothecin, and Other

Cytotoxic Anticancer Drugs: A Cautionary Note. Cancer Research 49: 5870–
5878.

57. Axelsson G, Korsan-Bengtsen K, Waldenström J (1976) Prothrombin determi-
nation by means of a chromogenic peptide substrate. Thromb Haemost 36: 517–

524.

58. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining
and flow cytometry. Nat Protoc 1: 1458–1461. doi:10.1038/nprot.2006.238.

59. Nelson J, Gibbons E, Pickett KR, Streeter M, Warcup AO, et al. (2011)
Relationship between membrane permeability and specificity of human

secretory phospholipase A2 isoforms during cell death. Biochimica et Biophysica

Acta (BBA) - Biomembranes 1808: 1913–1920. doi:10.1016/j.bba-
mem.2011.04.003.

60. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel
assay for apoptosis. Flow cytometric detection of phosphatidylserine expression

on early apoptotic cells using fluorescein labelled Annexin V. J Immunol

Methods 184: 39–51.
61. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss

of phospholipid asymmetry and surface exposure of phosphatidylserine is

required for phagocytosis of apoptotic cells by macrophages and fibroblasts.

J Biol Chem 276: 1071–1077. doi:10.1074/jbc.M003649200.
62. Schroit AJ, Madsen JW, Tanaka Y (1985) In vivo recognition and clearance of

red blood cells containing phosphatidylserine in their plasma membranes. J Biol

Chem 260: 5131–5138.
63. Burke JR, Witmer MR, Tredup JA (1999) The size and curvature of anionic

covesicle substrate affects the catalytic action of cytosolic phospholipase A2. Arch
Biochem Biophys 365: 239–247. doi:10.1006/abbi.1999.1151.

64. Wilson HA, Waldrip JB, Nielson KH, Judd AM, Han SK, et al. (1999)

Mechanisms by which elevated intracellular calcium induces S49 cell
membranes to become susceptible to the action of secretory phospholipase

A2. J Biol Chem 274: 11494–11504.
65. Bailey RW, Olson ED, Vu MP, Brueseke TJ, Robertson L, et al. (2007)

Relationship between Membrane Physical Properties and Secretory Phospho-
lipase A2 Hydrolysis Kinetics in S49 Cells during Ionophore-Induced Apoptosis.

Biophys J 93: 2350–2362. doi:10.1529/biophysj.107.104679.

66. Tait JF, Sakata M, McMullen BA, Miao CH, Funakoshi T, et al. (1988)
Placental anticoagulant proteins: isolation and comparative characterization four

members of the lipocortin family. Biochemistry 27: 6268–6276.
67. Nielson KH, Olsen CA, Allred DV, O’Neill KL, Burton GF, et al. (2000)

Susceptibility of S49 lymphoma cell membranes to hydrolysis by secretory

phospholipase A2 during early phase of apoptosis. Biochimica et Biophysica
Acta (BBA) - Molecular and Cell Biology of Lipids 1484: 163–174. doi:10.1016/

S1388-1981(00)00004-4.
68. Bevers EM, Comfurius P, Zwaal RF (1983) Changes in membrane phospholipid

distribution during platelet activation. Biochim Biophys Acta 736: 57–66.
69. Frasch SC, Henson PM, Kailey JM, Richter DA, Janes MS, et al. (2000)

Regulation of Phospholipid Scramblase Activity During Apoptosis and Cell

Activation by Protein Kinase Cd. J Biol Chem 275: 23065–23073. doi:10.1074/
jbc.M003116200.

70. Fadok VA, Bratton DL, Rose DM, Pearson A, Ezekewitz RAB, et al. (2000) A
receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405:

85–90. doi:10.1038/35011084.

71. Lapointe S, Brkovic A, Cloutier I, Tanguay J-F, Arm JP, et al. (2010) Group V
secreted phospholipase A2 contributes to LPS-induced leukocyte recruitment.

J Cell Physiol 224: 127–134. doi:10.1002/jcp.22106.
72. Verger R (1976) Interfacial enzyme kinetics of lipolysis. Annu Rev Biophys

Bioeng 5: 77–117. doi:10.1146/annurev.bb.05.060176.000453.
73. Berg OG, Yu BZ, Rogers J, Jain MK (1991) Interfacial catalysis by

phospholipase A2: determination of the interfacial kinetic rate constants.

Biochemistry 30: 7283–7297. doi:10.1021/bi00243a034.
74. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, et al. (2007) MFG-

E8-mediated uptake of apoptotic cells by APCs links the pro- and
antiinflammatory activities of GM-CSF. J Clin Invest 117: 1902–1913.

doi:10.1172/JCI30966.

75. Cui T, Miksa M, Wu R, Komura H, Zhou M, et al. (2010) Milk fat globule
epidermal growth factor 8 attenuates acute lung injury in mice after intestinal

ischemia and reperfusion. Am J Respir Crit Care Med 181: 238–246.
doi:10.1164/rccm.200804-625OC.

76. Schlegel RA, Williamson P (2001) Phosphatidylserine, a death knell. Cell Death
Differ 8: 551–563. doi:10.1038/sj.cdd.4400817.

77. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis

and necrosis: two distinct events induced, respectively, by mild and intense
insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell

cultures. PNAS 92: 7162–7166.
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