411 research outputs found

    Phenothiazine-functionalized redox polymers for a new cathode-active material

    Get PDF

    Ciphertext-Policy Attribute-Based Encryption with Key-Delegation Abuse Resistance

    Get PDF
    Attribute-based encryption (ABE) is a promising cryptographic primitive that allows one-to-many encryption. In such a system, users\u27 private keys are linked to their access rights. We note that if a user can generate a new private key for a portion of his/her access right, this could potentially lead to some undesirable situations, which violate the access control policy. Interestingly, to date, there is no work that looks into this matter in detail nor addresses it. We point out that this is a property that exists in ABE systems, which we refer to key-delegation abuse . ABE systems that suffer from key-delegation abuse will hinder the adoption of these systems in practice. In this work, for the first time in the literature, we address the key-delegation abuse problem in Ciphertext-policy Attribute-based Encryption (CP-ABE) systems. We introduce a new mechanism to enhance CP-ABE schemes that provide protections against this key-delegation abuse issue. We formalize the security requirements for such a property, and subsequently construct a CP-ABE scheme that satisfies the new security requirements. We also present an application of our scheme to a traceable CP-ABE, where the traitors , i.e. the users who have leaked their keys, can be traced. address the key-delegation abuse problem in Ciphertext-policy Attribute-based Encryption (CP-ABE) systems. We introduce a new mechanism to enhance CPABE schemes that provide protections against this key-delegation abuse issue. We formalize the security requirements for such a property, and subsequently construct a CP-ABE scheme that satisfies the new security requirements.We also present an application of our scheme to a traceable CP-ABE, where the traitors , i.e. the users who have leaked their keys, can be traced

    Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Get PDF
    Weinvestigate the thickness and temperature dependence of a series of Ni0.8Fe0.2/Ir0.2Mn0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet (tFM tAFM) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of tFM tAFM lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise

    Prominin-1 Modulates Rho/ROCK-Mediated Membrane Morphology and Calcium-Dependent Intracellular Chloride Flux

    Get PDF
    Membrane morphology is an important structural determinant as it reflects cellular functions. The pentaspan membrane protein Prominin-1 (Prom1/CD133) is known to be localised to protrusions and plays a pivotal role in migration and the determination of cellular morphology; however, the underlying mechanism of its action have been elusive. Here, we performed molecular characterisation of Prom1, focussing primarily on its effects on cell morphology. Overexpression of Prom1 in RPE-1 cells triggers multiple, long, cholesterol-enriched fibres, independently of actin and microtubule polymerisation. A five amino acid stretch located at the carboxyl cytosolic region is essential for fibre formation. The small GTPase Rho and its downstream Rho-associated coiled-coil-containing protein kinase (ROCK) are also essential for this process, and active Rho colocalises with Prom1 at the site of initialisation of fibre formation. In mouse embryonic fibroblast (MEF) cells we show that Prom1 is required for chloride ion efflux induced by calcium ion uptake, and demonstrate that fibre formation is closely associated with chloride efflux activity. Collectively, these findings suggest that Prom1 affects cell morphology and contributes to chloride conductance

    Efficient Bit-Decomposition and Modulus-Conversion Protocols with an Honest Majority

    Get PDF
    We propose secret-sharing-based bit-decomposition and modulus conversion protocols for a prime order ring Zp\mathbb{Z}_p with an honest majority: an adversary can corrupt k1k-1 parties of nn parties and 2k1n2k-1 \le n. Our protocols are secure against passive and active adversaries depending on the components of our protocols. We assume a secret is an \ell-bit element and 2+logm<p2^{\ell+\lceil \log m \rceil} < p, where m=km= k in the passive security and m=(nk1)m= \binom{n}{k-1} in the active security. The outputs of our bit-decomposition and modulus-conversion protocols are \ell tuple of shares in Z2\mathbb{Z}_2 and a share in Zp2˘7\mathbb{Z}_{p\u27}, respectively, where p2˘7p\u27 is the modulus to be converted. If kk and nn are small, the communication complexity of our passively secure bit-decomposition and modulus-conversion protocols are O()O(\ell) bits and O(logp2˘7)O(\lceil \log p\u27 \rceil) bits, respectively. Our key observation is that a quotient of additive shares can be computed from the \emph{least} significant logm\lceil \log m \rceil bits. If a secret aa is ``shifted\u27\u27 and additively shared by xix_i in Zp\mathbb{Z}_p as 2logma=i=0m1xi=2logma+qp2^{\lceil \log m \rceil}a = \sum_{i=0}^{m-1} x_i = 2^{ \lceil \log m \rceil} a + qp, the least significant logm\lceil \log m \rceil bits of i=0m1xi\sum_{i=0}^{m-1} x_i determines qq since pp is an odd prime and the least significant logm\lceil \log m \rceil bits of 2logma2^{\lceil \log m \rceil} a are 00s

    Synthesis of air‐stable, odorless thiophenol surrogates via Ni‐Catalyzed C−S cross‐coupling

    Get PDF
    Thiophenols are versatile synthetic intermediates whose practical appeal is marred by their air sensitivity, toxicity and extreme malodor. Herein we report an efficient catalytic method for the preparation of S-aryl isothiouronium salts, and demonstrate that these air-stable, odorless solids serve as user-friendly sources of thiophenols in synthesis. Diverse isothiouronium salts featuring synthetically useful functionality are readily accessible via nickelcatalyzed C-S cross-coupling of (hetero)aryl iodides and thiourea. Convenient, chromatography-free isolation of these salts is achieved via precipitation, allowing the methodology to be translated directly to large scales. Thiophenols are liberated from the corresponding isothiouronium salts upon treatment with a weak base, enabling an in situ release / S-functionalization strategy that entirely negates the need to isolate, purify or manipulate these noxious reagent

    Ultrafast All-Polymer Paper-Based Batteries

    Get PDF
    Conducting polymers for battery applications have been subject to numerous investigations during the last two decades. However, the functional charging rates and the cycling stabilities have so far been found to be insufficient for practical applications. These shortcomings can, at least partially, be explained by the fact that thick layers of the conducting polymers have been used to obtain sufficient capacities of the batteries. In the present letter, we introduce a novel nanostructured high-surface area electrode material for energy storage applications composed of cellulose fibers of algal origin individually coated with a 50 nm thin layer of polypyrrole. Our results show the hitherto highest reported charge capacities and charging rates for an all polymer paper-based battery. The composite conductive paper material is shown to have a specific surface area of 80 m2 g-1 and batteries based on this material can be charged with currents as high as 600 mA cm-2 with only 6 % loss in capacity over 100 subsequent charge and discharge cycles. The aqueous-based batteries, which are entirely based on cellulose and polypyrrole and exhibit charge capacities between 25 and 33 mAh g-1 or 38-50 mAh g-1 per weight of the active material, open up new possibilities for the production of environmentally friendly, cost efficient, up-scalable and lightweight energy storage systems. There is currently a great interest in the development of thin, flexible, lightweight, and environmentally friendly batteries and supercapacitors.1 In this process, the preparation of novel redox polymer and electronically conducting polymer-base
    corecore