121 research outputs found

    Trapping of Neutral Mercury Atoms and Prospects for Optical Lattice Clocks

    Full text link
    We report a vapor-cell magneto-optical trapping of Hg isotopes on the 1S03P1{}^1S_0-{}^3P_1 intercombination transition. Six abundant isotopes, including four bosons and two fermions, were trapped. Hg is the heaviest non-radioactive atom trapped so far, which enables sensitive atomic searches for ``new physics'' beyond the standard model. We propose an accurate optical lattice clock based on Hg and evaluate its systematic accuracy to be better than 101810^{-18}. Highly accurate and stable Hg-based clocks will provide a new avenue for the research of optical lattice clocks and the time variation of the fine-structure constant.Comment: 4 pages, 3 figure

    An examination of the Apo-1/Fas promoter Mva I polymorphism in Japanese patients with multiple sclerosis

    Get PDF
    BACKGROUND: The Apo-1/Fas (CD95) molecule is an apoptosis-signaling cell surface receptor belonging to the tumor necrosis factor (TNF) receptor family. Both Fas and Fas ligand (FasL) are expressed in activated mature T cells, and prolonged cell activation induces susceptibility to Fas-mediated apoptosis. The Apo-1/Fas gene is located in a chromosomal region that shows linkage in multiple sclerosis (MS) genome screens, and studies indicate that there is aberrant expression of the Apo-1/Fas molecule in MS. METHODS: Mva I polymorphism on the Apo-1/Fas promoter gene was detected by PCR-RFLP from the DNA of 114 Japanese patients with conventional MS and 121 healthy controls. We investigated the association of the Mva I polymorphism in Japanese MS patients using a case-control association study design. RESULTS: We found no evidence that the polymorphism contributes to susceptibility to MS. Furthermore, there was no association between Apo-1/Fas gene polymorphisms and clinical course (relapsing-remitting course or secondary-progressive course). No significant association was observed between Apo-1/Fas gene polymorphisms and the age at disease onset. CONCLUSIONS: Overall, our findings suggest that Apo-1/Fas promoter gene polymorphisms are not conclusively related to susceptibility to MS or the clinical characteristics of Japanese patients with MS

    Association of CCR2-CCR5 Haplotypes and CCL3L1 Copy Number with Kawasaki Disease, Coronary Artery Lesions, and IVIG Responses in Japanese Children

    Get PDF
    BACKGROUND: The etiology of Kawasaki Disease (KD) is enigmatic, although an infectious cause is suspected. Polymorphisms in CC chemokine receptor 5 (CCR5) and/or its potent ligand CCL3L1 influence KD susceptibility in US, European and Korean populations. However, the influence of these variations on KD susceptibility, coronary artery lesions (CAL) and response to intravenous immunoglobulin (IVIG) in Japanese children, who have the highest incidence of KD, is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used unconditional logistic regression analyses to determine the associations of the copy number of the CCL3L1 gene-containing duplication and CCR2-CCR5 haplotypes in 133 Japanese KD cases [33 with CAL and 25 with resistance to IVIG] and 312 Japanese controls without a history of KD. We observed that the deviation from the population average of four CCL3L1 copies (i.e., <or>four copies) was associated with an increased risk of KD and IVIG resistance (adjusted odds ratio (OR)=2.25, p=0.004 and OR=6.26, p=0.089, respectively). Heterozygosity for the CCR5 HHF*2 haplotype was associated with a reduced risk of both IVIG resistance (OR=0.21, p=0.026) and CAL development (OR=0.44, p=0.071). CONCLUSIONS/SIGNIFICANCE: The CCL3L1-CCR5 axis may play an important role in KD pathogenesis. In addition to clinical and laboratory parameters, genetic markers may also predict risk of CAL and resistance to IVIG

    HBsAg Inhibits the Translocation of JTB into Mitochondria in HepG2 Cells and Potentially Plays a Role in HCC Progression

    Get PDF
    Background and Aims: The expression of the jumping translocation breakpoint (JTB) gene is upregulated in malignant liver tissues; however, JTB is associated with unbalanced translocations in many other types of cancer that suppress JTB expression. No comprehensive analysis on its function in human hepatocellular carcinoma (HCC) has been performed to date. We aimed to define the biological consequences for interaction between JTB and HBsAg in HCC cell lines. Methods: We employed the stable transfection to establish small HBsAg expressing HepG2 cell line, and stably silenced the JTB expression using short hairpin RNA in HepG2 cell line. The effects of JTB and small HBsAg in vitro were determined by assessing cell apoptosis and motility. Results: Silencing of JTB expression promoted cancer cell motility and reduced cell apoptosis, which was significantly enhanced by HBs expression. Expression of HBsAg inhibited the translocation of JTB to the mitochondria. Furthermore, silencing of the JTB resulted in an increase in the phosphorylation of p65 in HepG2 cells and HepG2-HBs cells, whereas HBsAg expression decreased the phosphorylation of p65. The silencing of JTB in HepG2-HBs cells conferred increased advantages in cell motility and anti-apoptosis. Conclusion: HBsAg inhibited the translocation of JTB to the mitochondria and decreased the phosphorylation of p65 through the interaction with JTB, After JTB knockdown, HBsAg exhibited a stronger potential to promote tumor progression. Our data suggested that JTB act as a tumor suppressor gene in regards to HBV infection and its activation might be applied as a therapeutic strategy for in control of HBV related HCC development.National Natural Science Foundation of China [30971362, 81072013]; Fundamental Research Funds for the Central Universities in China [2010111082]; Key Projects for Technology Plan of Fujian Province in China [2009D020]; Foundation of Health Bureau of Fujian in China [2007CXB8, 3502z20077046]; Foundation of Health Bureau of Xiamen in China [2007CXB8, 3502z20077046

    CCR2-V64I polymorphism is associated with increased risk of cervical cancer but not with HPV infection or pre-cancerous lesions in African women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cervical cancer, caused by specific oncogenic types of human papillomavirus (HPV), is the second most common cancer in women worldwide. A large number of young sexually active women get infected by HPV but only a small fraction of them have persistent infection and develop cervical cancer pointing to co- factors including host genetics that might play a role in outcome of the HPV infection. This study investigated the role of <it>CCR2-V64I </it>polymorphism in cervical cancer, pre-cancers and HPV infection in South African women resident in Western Cape. <it>CCR2-V64I </it>polymorphism has been previously reported to influence the progression to cervical cancer in some populations and has also been associated with decreased progression from HIV infection to AIDS.</p> <p>Methods</p> <p>Genotyping for <it>CCR2-V64I </it>was done by PCR-SSP in a case-control study of 446 women (106 black African and 340 mixed-ancestry) with histologically confirmed invasive cervical cancer and 1432 controls (322 black African and 1110 mixed-ancestry) group-matched (1:3) by age, ethnicity and domicile status. In the control women HPV was detected using the Digene Hybrid Capture II test and cervical disease was detected by cervical cytology.</p> <p>Results</p> <p>The <it>CCR2-64I </it>variant was significantly associated with cervical cancer when cases were compared to the control group (P = 0.001). Further analysis comparing selected groups within the controls showed that individuals with abnormal cytology and high grade squamous intraepitleial neoplasia (HSIL) did not have this association when compared to women with normal cytology. HPV infection also showed no association with <it>CCR2-64I </it>variant. Comparing SIL positive controls with the cases showed a significant association of <it>CCR2-64I </it>variant (P = 0.001) with cervical cancer.</p> <p>Conclusions</p> <p>This is the first study of the role of <it>CCR2-V64I </it>polymorphism in cervical cancer in an African population. Our results show that <it>CCR2-64I </it>variant is associated with the risk of cervical cancer but does not affect the susceptibility to HPV infection or HSIL in South African women of black and mixed-ancestry origin. This result implies that the role of CCR2 is important in invasive cancer of the cervix but not in HPV infection or in the development of pre-cancers.</p

    Simultaneous siRNA Targeting of Src and Downstream Signaling Molecules Inhibit Tumor Formation and Metastasis of a Human Model Breast Cancer Cell Line

    Get PDF
    Src and signaling molecules downstream of Src, including signal transducer and activator of transcription 3 (Stat3) and cMyc, have been implicated in the development, maintenance and/or progression of several types of human cancers, including breast cancer. Here we report the ability of siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc to inhibit the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S, a widely used model for breast cancer research.Src and its downstream signaling partners were specifically targeted and knocked-down using siRNA. Changes in the growth properties of the cultured cancer cells/tumors were documented using assays that included anchorage-dependent and -independent (in soft agar) cell growth, apoptosis, and both primary and metastatic tumor growth in the mouse tumor model. siRNA-mediated Src knock-down alone, and simultaneous knock-down of Src and Stat3 and/or cMyc inhibited the neoplastic phenotype of a highly metastatic human model breast cancer cell line, MDA-MB-435S. This knock-down resulted in reduced growth in monolayer and soft agar cultures, and a reduced ability to form primary tumors in NOD/SCID mice. In addition, direct intra-tumoral injection of siRNAs targeting these signaling molecules resulted in a substantial inhibition of tumor metastases as well as of primary tumor growth. Simultaneous knock-down of Src and Stat3, and/or Myc exhibited the greatest effects resulting in substantial inhibition of primary tumor growth and metastasis.These findings demonstrate the effectiveness of simultaneous targeting of Src and the downstream signaling partners Stat3 and/or cMyc to inhibit the growth and oncogenic properties of a human cancer cell line. This knowledge may be very useful in the development of future therapeutic approaches involving targeting of specific genes products involved in tumor growth and metastasis

    Histone Demethylase JMJD2B Functions as a Co-Factor of Estrogen Receptor in Breast Cancer Proliferation and Mammary Gland Development

    Get PDF
    Estrogen is a key regulator of normal function of female reproductive system and plays a pivotal role in the development and progression of breast cancer. Here, we demonstrate that JMJD2B (also known as KDM4B) constitutes a key component of the estrogen signaling pathway. JMJD2B is expressed in a high proportion of human breast tumors, and that expression levels significantly correlate with estrogen receptor (ER) positivity. In addition, 17-beta-estradiol (E2) induces JMJD2B expression in an ERα dependent manner. JMJD2B interacts with ERα and components of the SWI/SNF-B chromatin remodeling complex. JMJD2B is recruited to ERα target sites, demethylates H3K9me3 and facilitates transcription of ER responsive genes including MYB, MYC and CCND1. As a consequence, knockdown of JMJD2B severely impairs estrogen-induced cell proliferation and the tumor formation capacity of breast cancer cells. Furthermore, Jmjd2b-deletion in mammary epithelial cells exhibits delayed mammary gland development in female mice. Taken together, these findings suggest an essential role for JMJD2B in the estrogen signaling, and identify JMJD2B as a potential therapeutic target in breast cancer
    corecore