9,888 research outputs found

    UV-shielding ceramic nanoparticles synthesised by mechanochemcial processing

    Full text link
    ZnO, TiO2 and CeO2 are known as UV-shielding ceramic materials that have advantages over organic UV absorbers for their photo-stability and non-hazardous nature to human bodies. However, they normally cause low transparency in the visible-light range due to light scattering by large particles, which is undesirable for many transparent UV-blocking applications in cosmetic and plastic industries. Light-scattering efficiency of particles can be drastically reduced by decreasing the particle sizes down below 100 nm. This paper reviews recent investigation on the synthesis of ZnO and CeO2 nanoparticles by mechanochemical processing. The resulting particles had a significantly low degree of agglomeration, having mean particle sizes of ~ 25 nm and ~ 10 nm, respectively. The aqueous suspensions of the nanoparticles showed strong absorption in the UV-light range and high transmittance in the visible-light range. Mechanochemical processing offers the possibility of industrial-scale production of transparent UV-shielding ceramic particles for many applications.<br /

    Effects of photoperiod on growth of larvae and juveniles of the anemonefish Amphiprion melanopus

    Get PDF
    Rearing of anemonefishes is now relatively routine compared to the culture of cardinalfishes (Apogonidae) or angelfishes (Pomacanthidae). However, it is still a labor intensive, time intensive and expensive procedure. To reduce time and cost of rearing anemonefishes, experiments were undertaken to improve the methods for rearing Amphiprion melanopus. These experiments were conducted to determine the effect of the length of photoperiod on larval duration, growth to metamorphosis and early juvenile phase. Growth of larvae was significantly faster and the duration of the larval phase was significantly shorter, under a photoperiod of 16 hours light/8 hours dark, compared to the photoperiods of 12 hours light/12 hours dark and 24 hours light/0 hours dark

    Airborne lidar measurements of El Chichon stratospheric aerosols, October 1982 to November 1982

    Get PDF
    A coordinated flight mission to determine the spatial distribution and aerosol characteristics of the El Chichon produced stratospheric aerosol was flown in October to November 1982. The mission covered 46 deg N to 46 deg S and included rendezvous between balloon-, airplane-, and satellite-borne sensors. The lidar data from the flight mission are presented. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering functions versus altitude are supplied for each profile. The bulk of the material produced by the El Chichon eruptions of late March 10 to early April 1982 resided between latitudes from 5 to 7 deg S to 35 to 37 deg N and was concentrated above 21 km in a layer that peaked at 23 to 25 km. In this latitude region, peak scattering ratios at a wavelength of 0.6943 micron were approximately 24. The results of this mission are presented in a ready-to-use format for atmospheric and climatic studies

    Airborne lidar measurements of El Chichon stratospheric aerosols

    Get PDF
    A NASA Electra airplane, outfitted with a lidar system, was flown in January to February 1983 between the latitudes of 27 deg N and 76 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric material. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of the integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. It addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. The largest amount of material produced by the El Chichon eruptions of late March to early April 1982, which was measured by this flight, resided between 35 deg N and 52 deg N. Peak backscatter ratios at a wavelength of 0.6943 micro m decreased from 8 to 10 at the lower latitudes to 3 at the higher latitudes. Backscatter ratio profiles taken while crossing the polar vortex show that the high-altitude material from El Chichon arrived at the north polar region sometime after the winter polar vortex was established. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies

    Airborne lidar measurements of El Chichon stratospheric aerosols, January 1984

    Get PDF
    A lidar-equipped NASA Electra aircraft was flown in January 1984 between the latitude of 38 and 90 deg N. One of the primary purposes of this mission was to determine the spatial distribution and aerosol characteristics of El Chichon produced stratospheric material. Lidar data from that portion of the flight mission between 38 deg N and 77 deg N is presented. Representative profiles of lidar backscatter ratio, a plot of the integral backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are applied for each profile. These data clearly show that material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission, and that the most massive portion of the material resided north of 55 deg N and was concentrated below 17 km in a layer that peaked at 13 to 15 km. In this latitude region, peak backscatter ratios at a wavelength of 0.6943 microns were approximately 3 and the peak integrated backscattering function was about 15 X 10 to the -4/sr corresponding to a peak optical depth of approximately 0.07. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies

    Airborne lidar measurements of El Chichon stratospheric aerosols, May 1983

    Get PDF
    An experimental survey flight to determine the spatial distribution and aerosol characteristics of the El Chichon-produced stratospheric aerosol was conducted in May 1983. The mission included several different sensors flown abroad the NASA Convair 990 at latitudes between 72 deg. and 56 deg. S. This report presents the lidar data from that flight mission. Representative profiles of lidar backscatter ratio, plots of integrated backscattering function versus latitude, and contours of backscatter mixing ratio versus altitude and latitude are given. In addition, tables containing numerical values of the backscatter ratio and backscattering function versus altitude are supplied for each profile. By May 1983, material produced by the El Chichon eruptions of late March-early April 1982 had spread throughout the latitudes covered by this mission. However, the most massive portion of the material resided north of 33 deg. N and was concentrared below 21 km. In this latitude region (33 deg. N to 72 deg. N), peak backscatter ratios at a wavelength of 0.6943 microns varied between 3.5 and 4.5, and the peak integratred backscattering function was about 18 X 10 to the -4 power/sr, corresponding to a peak optical depth calculated to be approximately 0.08. This report presents the results of this mission in a ready-to-use format for atmospheric and climatic studies

    Automatic signal range selector for metering devices Patent

    Get PDF
    Voltage range selection apparatus for sensing and applying voltages to electronic instruments without loading signal sourc
    corecore