96 research outputs found

    The association between real-life markers of phone use and cognitive performance, health-related quality of life and sleep

    Get PDF
    INTRODUCTION: The real-life short-term implications of electromagnetic fields (RF-EMF) on cognitive performance and health-related quality of life have not been well studied. The SPUTNIC study (Study Panel on Upcoming Technologies to study Non-Ionizing radiation and Cognition) aimed to investigate possible correlations between mobile phone radiation and human health, including cognition, health-related quality of life and sleep. METHODS: Adult participants tracked various daily markers of RF-EMF exposures (cordless calls, mobile calls, and mobile screen time 4 h prior to each assessment) as well as three health outcomes over ten study days: 1) cognitive performance, 2) health-related quality of life (HRQoL), and 3) sleep duration and quality. Cognitive performance was measured through six "game-like" tests, assessing verbal and visuo-spatial performance repeatedly. HRQoL was assessed as fatigue, mood and stress on a Likert-scale (1-10). Sleep duration and efficiency was measured using activity trackers. We fitted mixed models with random intercepts per participant on cognitive, HRQoL and sleep scores. Possible time-varying confounders were assessed at daily intervals by questionnaire and used for model adjustment. RESULTS: A total of 121 participants ultimately took part in the SPUTNIC study, including 63 from Besancon and 58 from Basel. Self-reported wireless phone use and screen time were sporadically associated with visuo-spatial and verbal cognitive performance, compatible with chance findings. We found a small but robust significant increase in stress 0.03 (0.00-0.06; on a 1-10 Likert-scale) in relation to a 10-min increase in mobile phone screen time. Sleep duration and quality were not associated with either cordless or mobile phone calls, or with screen time. DISCUSSION: The study did not find associations between short-term RF-EMF markers and cognitive performance, HRQoL, or sleep duration and quality. The most consistent finding was increased stress in relation to more screen time, but no association with cordless or mobile phone call time

    Flow cytometry sorting of cells infected with African swine fever virus

    Get PDF
    The African swine fever panzootic  is continuing  to spread,  and the number  of affected countries and material losses are increasing. In particular, India, Papua New Guinea, Malaysia, Greece and Bhutan joined the list of ASF infected countries in 2020–2021. The disease control is hindered  by the lack of commercially available and effective vaccines, which, in its turn, is attributable  to the insufficient knowledge of ASF pathogenesis  and immune defense against the disease. The use of attenuated virus variants enables a thorough  investigation of the factors influencing the virulence of African swine fever virus and the immune  response  to it. This involves the use of naturally attenuated virus variants, as well as of the variants attenuated by a long-term passaging of the virus in cell cultures. However, virulence heterogeneity characteristic of the ASF virus population, necessitates  the additional selection of infected cells for the virus cloning. Conventional culture-based techniques for virus particle cloning are rather time- and labour-consuming;  it is therefore appropriate  to use flow cytometry cell sorting for the selection and cloning of virus infected cells with a view of selecting  homologous  virus lineages.  The paper  presents  the results of sorting  of African green  monkey kidney cells (CV-1) and porcine bone marrow cells infected with African swine fever virus; the cells were sorted into the 96-well culture plates using a MoFlo  Astrios   EQ cell sorter in order to isolate a population of the virus originating from one infected cell. After the single cell sorting of the infected cell cultures into the 96-well plates, ASF positive cell detection  rates in the plate wells were 30% for porcine bone marrow cells and 20% for CV-1

    EMSY overexpression disrupts the BRCA2/RAD51 pathway in the DNA-damage response: implications for chromosomal instability/recombination syndromes as checkpoint diseases

    Get PDF
    EMSY links the BRCA2 pathway to sporadic breast/ovarian cancer. It encodes a nuclear protein that binds to the BRCA2 N-terminal domain implicated in chromatin/transcription regulation, but when sporadically amplified/overexpressed, increased EMSY level represses BRCA2 transactivation potential and induces chromosomal instability, mimicking the activity of BRCA2 mutations in the development of hereditary breast/ovarian cancer. In addition to chromatin/transcription regulation, EMSY may also play a role in the DNA-damage response, suggested by its ability to localize at chromatin sites of DNA damage/repair. This implies that EMSY overexpression may also repress BRCA2 in DNA-damage replication/checkpoint and recombination/repair, coordinated processes that also require its interacting proteins: PALB2, the partner and localizer of BRCA2; RPA, replication/checkpoint protein A; and RAD51, the inseparable recombination/repair enzyme. Here, using a well-characterized recombination/repair assay system, we demonstrate that a slight increase in EMSY level can indeed repress these two processes independently of transcriptional interference/repression. Since EMSY, RPA and PALB2 all bind to the same BRCA2 region, these findings further support a scenario wherein: (a) EMSY amplification may mimic BRCA2 deficiency, at least by overriding RPA and PALB2, crippling the BRCA2/RAD51 complex at DNA-damage and replication/transcription sites; and (b) BRCA2/RAD51 may coordinate these processes by employing at least EMSY, PALB2 and RPA. We extensively discuss the molecular details of how this can happen to ascertain its implications for a novel recombination mechanism apparently conceived as checkpoint rather than a DNA repair system for cell division, survival, death, and human diseases, including the tissue specificity of cancer predisposition, which may renew our thinking about targeted therapy and prevention

    Enzymatic Activities and DNA Substrate Specificity of Mycobacterium tuberculosis DNA Helicase XPB

    Get PDF
    XPB, also known as ERCC3 and RAD25, is a 3′→5′ DNA repair helicase belonging to the superfamily 2 of helicases. XPB is an essential core subunit of the eukaryotic basal transcription factor complex TFIIH. It has two well-established functions: in the context of damaged DNA, XPB facilitates nucleotide excision repair by unwinding double stranded DNA (dsDNA) surrounding a DNA lesion; while in the context of actively transcribing genes, XPB facilitates initiation of RNA polymerase II transcription at gene promoters. Human and other eukaryotic XPB homologs are relatively well characterized compared to conserved homologs found in mycobacteria and archaea. However, more insight into the function of bacterial helicases is central to understanding the mechanism of DNA metabolism and pathogenesis in general. Here, we characterized Mycobacterium tuberculosis XPB (Mtb XPB), a 3′→5′ DNA helicase with DNA-dependent ATPase activity. Mtb XPB efficiently catalyzed DNA unwinding in the presence of significant excess of enzyme. The unwinding activity was fueled by ATP or dATP in the presence of Mg2+/Mn2+. Consistent with the 3′→5′ polarity of this bacterial XPB helicase, the enzyme required a DNA substrate with a 3′ overhang of 15 nucleotides or more. Although Mtb XPB efficiently unwound DNA model substrates with a 3′ DNA tail, it was not active on substrates containing a 3′ RNA tail. We also found that Mtb XPB efficiently catalyzed ATP-independent annealing of complementary DNA strands. These observations significantly enhance our understanding of the biological roles of Mtb XPB

    Rad51 Inhibits Translocation Formation by Non-Conservative Homologous Recombination in Saccharomyces cerevisiae

    Get PDF
    Chromosomal translocations are a primary biological response to ionizing radiation (IR) exposure, and are likely to result from the inappropriate repair of the DNA double-strand breaks (DSBs) that are created. An abundance of repetitive sequences in eukaryotic genomes provides ample opportunity for such breaks to be repaired by homologous recombination (HR) between non-allelic repeats. Interestingly, in the budding yeast, Saccharomyces cerevisiae the central strand exchange protein, Rad51 that is required for DSB repair by gene conversion between unlinked repeats that conserves genomic structure also suppresses translocation formation by several HR mechanisms. In particular, Rad51 suppresses translocation formation by single-strand annealing (SSA), perhaps the most efficient mechanism for translocation formation by HR in both yeast and mammalian cells. Further, the enhanced translocation formation that emerges in the absence of Rad51 displays a distinct pattern of genetic control, suggesting that this occurs by a separate mechanism. Since hypomorphic mutations in RAD51 in mammalian cells also reduce DSB repair by conservative gene conversion and stimulate non-conservative repair by SSA, this mechanism may also operate in humans and, perhaps contribute to the genome instability that propels the development of cancer

    Bronchopulmonary dysplasia: clinical aspects and preventive and therapeutic strategies

    Full text link
    Abstract Background Bronchopulmonary dysplasia (BPD) is the result of a complex process in which several prenatal and/or postnatal factors interfere with lower respiratory tract development, leading to a severe, lifelong disease. In this review, what is presently known regarding BPD pathogenesis, its impact on long-term pulmonary morbidity and mortality and the available preventive and therapeutic strategies are discussed. Main body Bronchopulmonary dysplasia is associated with persistent lung impairment later in life, significantly impacting health services because subjects with BPD have, in most cases, frequent respiratory diseases and reductions in quality of life and life expectancy. Prematurity per se is associated with an increased risk of long-term lung problems. However, in children with BPD, impairment of pulmonary structures and function is even greater, although the characterization of long-term outcomes of BPD is difficult because the adults presently available to study have received outdated treatment. Prenatal and postnatal preventive measures are extremely important to reduce the risk of BPD. Conclusion Bronchopulmonary dysplasia is a respiratory condition that presently occurs in preterm neonates and can lead to chronic respiratory problems. Although knowledge about BPD pathogenesis has significantly increased in recent years, not all of the mechanisms that lead to lung damage are completely understood, which explains why therapeutic approaches that are theoretically effective have been only partly satisfactory or useless and, in some cases, potentially negative. However, prevention of prematurity, systematic use of nonaggressive ventilator measures, avoiding supraphysiologic oxygen exposure and administration of surfactant, caffeine and vitamin A can significantly reduce the risk of BPD development. Cell therapy is the most fascinating new measure to address the lung damage due to BPD. It is desirable that ongoing studies yield positive results to definitively solve a major clinical, social and economic problem

    Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic

    Get PDF
    Introduction Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality. Methods Prospective cohort study in 109 institutions in 41 countries. Inclusion criteria: children <18 years who were newly diagnosed with or undergoing active treatment for acute lymphoblastic leukaemia, non-Hodgkin's lymphoma, Hodgkin lymphoma, retinoblastoma, Wilms tumour, glioma, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma, medulloblastoma and neuroblastoma. Of 2327 cases, 2118 patients were included in the study. The primary outcome measure was all-cause mortality at 30 days, 90 days and 12 months. Results All-cause mortality was 3.4% (n=71/2084) at 30-day follow-up, 5.7% (n=113/1969) at 90-day follow-up and 13.0% (n=206/1581) at 12-month follow-up. The median time from diagnosis to multidisciplinary team (MDT) plan was longest in low-income countries (7 days, IQR 3-11). Multivariable analysis revealed several factors associated with 12-month mortality, including low-income (OR 6.99 (95% CI 2.49 to 19.68); p<0.001), lower middle income (OR 3.32 (95% CI 1.96 to 5.61); p<0.001) and upper middle income (OR 3.49 (95% CI 2.02 to 6.03); p<0.001) country status and chemotherapy (OR 0.55 (95% CI 0.36 to 0.86); p=0.008) and immunotherapy (OR 0.27 (95% CI 0.08 to 0.91); p=0.035) within 30 days from MDT plan. Multivariable analysis revealed laboratory-confirmed SARS-CoV-2 infection (OR 5.33 (95% CI 1.19 to 23.84); p=0.029) was associated with 30-day mortality. Conclusions Children with cancer are more likely to die within 30 days if infected with SARS-CoV-2. However, timely treatment reduced odds of death. This report provides crucial information to balance the benefits of providing anticancer therapy against the risks of SARS-CoV-2 infection in children with cancer

    Statistical model of the human RF exposure in small cell environment

    No full text
    International audienc
    corecore