42 research outputs found

    Accuracy of approximate methods for the calculation of absorption-type linear spectra with a complex system-bath coupling

    Full text link
    The accuracy of approximate methods for calculating linear optical spectra depends on many variables. In this study, we fix most of these parameters to typical values found in photosynthetic light-harvesting complexes of plants and determine the accuracy of approximate spectra with respect to exact calculation as a function of the energy gap and interpigment coupling in a pigment dimer. We use a spectral density with the first eight intramolecular modes of chlorophyll a and include inhomogeneous disorder for the calculation of spectra. We compare the accuracy of absorption, linear dichroism, and circular dichroism spectra calculated using the Full Cumulant Expansion (FCE), coherent time-dependent Redfield (ctR), and time-independent Redfield and modified Redfield methods. As a reference we use spectra calculated with the Exact Stochastic Path Integral Evaluation method. We find the FCE method to be the most accurate for the calculation of all spectra. The ctR method performs well for the qualitative calculation of absorption and linear dichroism spectra when pigments are moderately coupled (15 cm1\sim 15\text{ cm}^{-1}), but ctR spectra may differ significantly from exact spectra when strong interpigment coupling (100 cm1\sim 100\text{ cm}^{-1}) is present. The dependence of the quality of Redfield and modified Redfield spectra on molecular parameters is similar, and these methods almost always perform worse than ctR, especially when the interpigment coupling is strong or the excitonic energy gap is small (for a given coupling). The accuracy of approximate spectra is not affected by resonance between the excitonic energy gap and intramolecular modes when realistic inhomogeneous disorder is included.Comment: This article has been submitted to the Journal of Chemical Physics (JCP

    Excitation Dynamics and Relaxation in a Molecular Heterodimer

    Full text link
    The exciton dynamics in a molecular heterodimer is studied as a function of differences in excitation and reorganization energies, asymmetry in transition dipole moments and excited state lifetimes. The heterodimer is composed of two molecules modeled as two-level systems coupled by the resonance interaction. The system-bath coupling is taken into account as a modulating factor of the energy gap of the molecular excitation, while the relaxation to the ground state is treated phenomenologically. Comparison of the description of the excitation dynamics modeled using either the Redfield equations (secular and full forms) or the Hierarchical quantum master equation (HQME) is demonstrated and discussed. Possible role of the dimer as an excitation quenching center in photosynthesis self-regulation is discussed. It is concluded that the system-bath interaction rather than the excitonic effect determines the excitation quenching ability of such a dimer

    Electronic Coherence Dephasing in Excitonic Molecular Complexes: Role of Markov and Secular Approximations

    Full text link
    We compare four different types of equations of motion for reduced density matrix of a system of molecular excitons interacting with thermodynamic bath. All four equations are of second order in the linear system-bath interaction Hamiltonian, with different approximations applied in their derivation. In particular we compare time-nonlocal equations obtained from so-called Nakajima-Zwanzig identity and the time-local equations resulting from the partial ordering prescription of the cummulant expansion. In each of these equations we alternatively apply secular approximation to decouple population and coherence dynamics from each other. We focus on the dynamics of intraband electronic coherences of the excitonic system which can be traced by coherent two-dimensional spectroscopy. We discuss the applicability of the four relaxation theories to simulations of population and coherence dynamics, and identify features of the two-dimensional coherent spectrum that allow us to distinguish time-nonlocal effects.Comment: 14 pages, 8 figure

    Polarization-controlled optimal scatter suppression in transient absorption spectroscopy

    Get PDF
    Ultrafast transient absorption spectroscopy is a powerful technique to study fast photo-induced processes, such as electron, proton and energy transfer, isomerization and molecular dynamics, in a diverse range of samples, including solid state materials and proteins. Many such experiments suffer from signal distortion by scattered excitation light, in particular close to the excitation (pump) frequency. Scattered light can be effectively suppressed by a polarizer oriented perpendicular to the excitation polarization and positioned behind the sample in the optical path of the probe beam. However, this introduces anisotropic polarization contributions into the recorded signal. We present an approach based on setting specific polarizations of the pump and probe pulses, combined with a polarizer behind the sample. Together, this controls the signal-to-scatter ratio (SSR), while maintaining isotropic signal. We present SSR for the full range of polarizations and analytically derive the optimal configuration at angles of 40.5° between probe and pump and of 66.9° between polarizer and pump polarizations. This improves SSR by 33 52 ≈. (or 3 compared to polarizer parallel to probe). The calculations are validated by transient absorption experiments on the common fluorescent dye Rhodamine B. This approach provides a simple method to considerably improve the SSR in transient absorption spectroscopy

    Ultrafast Photo-Induced Charge Transfer Unveiled by Two-Dimensional Electronic Spectroscopy

    Get PDF
    The interaction of exciton and charge transfer (CT) states plays a central role in photo-induced CT processes in chemistry, biology and physics. In this work, we use a combination of two-dimensional electronic spectroscopy (2D-ES), pump-probe measurements and quantum chemistry to investigate the ultrafast CT dynamics in a lutetium bisphthalocyanine dimer in different oxidation states. It is found that in the anionic form, the combination of strong CT-exciton interaction and electronic asymmetry induced by a counter-ion enables CT between the two macrocycles of the complex on a 30 fs timescale. Following optical excitation, a chain of electron and hole transfer steps gives rise to characteristic cross-peak dynamics in the electronic 2D spectra, and we monitor how the excited state charge density ultimately localizes on the macrocycle closest to the counter-ion within 100 fs. A comparison with the dynamics in the radical species further elucidates how CT states modulate the electronic structure and tune fs-reaction dynamics. Our experiments demonstrate the unique capability of 2D-ES in combination with other methods to decipher ultrafast CT dynamics.Comment: 14 pages, 11 figures, and Supporting informatio

    Exciton Dynamics in Photosynthetic Complexes: Excitation by Coherent and Incoherent Light

    Full text link
    In this paper we consider dynamics of a molecular system subjected to external pumping by a light source. Within a completely quantum mechanical treatment, we derive a general formula, which enables to asses effects of different light properties on the photo-induced dynamics of a molecular system. We show that once the properties of light are known in terms of certain two-point correlation function, the only information needed to reconstruct the system dynamics is the reduced evolution superoperator. The later quantity is in principle accessible through ultrafast non-linear spectroscopy. Considering a direct excitation of a small molecular antenna by incoherent light we find that excitation of coherences is possible due to overlap of homogeneous line shapes associated with different excitonic states. In Markov and secular approximations, the amount of coherence is significant only under fast relaxation, and both the populations and coherences between exciton states become static at long time. We also study the case when the excitation of a photosynthetic complex is mediated by a mesoscopic system. We find that such case can be treated by the same formalism with a special correlation function characterizing ultrafast fluctuations of the mesoscopic system. We discuss bacterial chlorosom as an example of such a mesoscopic mediator and propose that the properties of energy transferring chromophore-protein complexes might be specially tuned for the fluctuation properties of their associated antennae.Comment: 12 page

    Exciton/Charge-transfer Electronic Couplings in Organic Semiconductors

    Get PDF
    Charge transfer (CT) states and excitons are important in energy conversion processes that occur in organic light emitting devices (OLEDS) and organic solar cells. An ab initio density functional theory (DFT) method for obtaining CT−exciton electronic couplings between CT states and excitons is presented. This method is applied to two organic heterodimers to obtain their CT−exciton coupling and adiabatic energy surfaces near their CT−exciton diabatic surface crossings. The results show that the new method provides a new window into the role of CT states in exciton−exciton transitions within organic semiconductors.United States. Dept. of Energy (DEFG02- 07ER46474)David & Lucile Packard Foundation (Fellowship

    Origin of Long Lived Coherences in Light-Harvesting Complexes

    Get PDF
    A vibronic exciton model is developed to investigate the origin of long lived coherences in light-harvesting complexes. Using experimentally determined parameters and uncorrelated site energy fluctuations, the model predicts oscillations in the nonlinear spectra of the Fenna-Matthews-Olson (FMO) complex with a dephasing time of 1.3 ps at 77 K. These oscillations correspond to the coherent superposition of vibronic exciton states with dominant contributions from vibrational excitations on the same pigment. Purely electronic coherences are found to decay on a 200 fs timescale.Comment: 4 pages, 2 figure

    Isothermal Maxwell daemon as a molecular rectifier

    No full text
    A standard quantum model of the interacting particle vs. single-mode phonon system under the influence of a thermodynamic bath is considered for very specific values of the parameters involved. The resulting computer-exact solutions show then the isothermal Maxwell daemon property reported so far for just a few exceptional non-trivial models. Owing to specific dynamical effects in the particle-phonon system, the resulting long-time particle site occupation probabilities are incompatible with the usual equilibrium statistical thermodynamics
    corecore