1,247 research outputs found

    Constraints on the Formation and Evolution of Circumstellar Disks in Rotating Magnetized Cloud Cores

    Get PDF
    We use magnetic collapse models to place some constraints on the formation and angular momentum evolution of circumstellar disks which are embedded in magnetized cloud cores. Previous models have shown that the early evolution of a magnetized cloud core is governed by ambipolar diffusion and magnetic braking, and that the core takes the form of a nonequilibrium flattened envelope which ultimately collapses dynamically to form a protostar. In this paper, we focus on the inner centrifugally-supported disk, which is formed only after a central protostar exists, and grows by dynamical accretion from the flattened envelope. We estimate a centrifugal radius for the collapse of mass shells within a rotating, magnetized cloud core. The centrifugal radius of the inner disk is related to its mass through the two important parameters characterizing the background medium: the background rotation rate \Omb and the background magnetic field strength \Bref. We also revisit the issue of how rapidly mass is deposited onto the disk (the mass accretion rate) and use several recent models to comment upon the likely outcome in magnetized cores. Our model predicts that a significant centrifugal disk (much larger than a stellar radius) will be present in the very early (Class 0) stage of protostellar evolution. Additionally, we derive an upper limit for the disk radius as it evolves due to internal torques, under the assumption that the star-disk system conserves its mass and angular momentum even while most of the mass is transferred to a central star.Comment: 23 pages, 1 figure, aastex, to appear in the Astrophysical Journal (10 Dec 1998

    Molecular Evolution in Collapsing Prestellar Cores

    Get PDF
    We have investigated the evolution and distribution of molecules in collapsing prestellar cores via numerical chemical models, adopting the Larson-Penston solution and its delayed analogues to study collapse. Molecular abundances and distributions in a collapsing core are determined by the balance among the dynamical, chemical and adsorption time scales. When the central density n_H of a prestellar core with the Larson-Penston flow rises to 3 10^6 cm^{-3}, the CCS and CO column densities are calculated to show central holes of radius 7000 AU and 4000 AU, respectively, while the column density of N2H+ is centrally peaked. These predictions are consistent with observations of L1544. If the dynamical time scale of the core is larger than that of the Larson-Penston solution owing to magnetic fields, rotation, or turbulence, the column densities of CO and CCS are smaller, and their holes are larger than in the Larson-Penston core with the same central gas density. On the other hand, N2H+ and NH3 are more abundant in the more slowly collapsing core. Therefore, molecular distributions can probe the collapse time scale of prestellar cores. Deuterium fractionation has also been studied via numerical calculations. The deuterium fraction in molecules increases as a core evolves and molecular depletion onto grains proceeds. When the central density of the core is n_H=3 10^6 cm^{-3}, the ratio DCO+/HCO+ at the center is in the range 0.06-0.27, depending on the collapse time scale and adsorption energy; this range is in reasonable agreement with the observed value in L1544.Comment: 21 pages, 17 figure

    Global Nonradial Instabilities of Dynamically Collapsing Gas Spheres

    Full text link
    Self-similar solutions provide good descriptions for the gravitational collapse of spherical clouds or stars when the gas obeys a polytropic equation of state, p=Kργp=K\rho^\gamma (with γ≤4/3\gamma\le 4/3). We study the behaviors of nonradial perturbations in the similarity solutions of Larson, Penston and Yahil, which describe the evolution of the collapsing cloud prior to core formation. Our global stability analysis reveals the existence of unstable bar-modes (l=2l=2) when γ≤1.09\gamma\le 1.09. In particular, for the collapse of isothermal spheres, which applies to the early stages of star formation, the l=2l=2 density perturbation relative to the background, δρ(r,t)/ρ(r,t)\delta\rho({\bf r},t)/\rho(r,t), increases as (t0−t)−0.352∝ρc(t)0.176(t_0-t)^{-0.352}\propto \rho_c(t)^{0.176}, where t0t_0 denotes the epoch of core formation, and ρc(t)\rho_c(t) is the cloud central density. Thus, the isothermal cloud tends to evolve into an ellipsoidal shape (prolate bar or oblate disk, depending on initial conditions) as the collapse proceeds. In the context of Type II supernovae, core collapse is described by the γ≃1.3\gamma\simeq 1.3 equation of state, and our analysis indicates that there is no growing mode (with density perturbation) in the collapsing core before the proto-neutron star forms, although nonradial perturbations can grow during the subsequent accretion of the outer core and envelope onto the neutron star. We also carry out a global stability analysis for the self-similar expansion-wave solution found by Shu, which describes the post-collapse accretion (``inside-out'' collapse) of isothermal gas onto a protostar. We show that this solution is unstable to perturbations of all ll's, although the growth rates are unknown.Comment: 28 pages including 7 ps figures; Minor changes in the discussion; To be published in ApJ (V.540, Sept.10, 2000 issue

    IR Dust Bubbles: Probing the Detailed Structure and Young Massive Stellar Populations of Galactic HII Regions

    Full text link
    We present an analysis of wind-blown, parsec-sized, mid-infrared bubbles and associated star-formation using GLIMPSE/IRAC, MIPSGAL/MIPS and MAGPIS/VLA surveys. Three bubbles from the Churchwell et al. (2006) catalog were selected. The relative distribution of the ionized gas (based on 20 cm emission), PAH emission (based on 8 um, 5.8 um and lack of 4.5 um emission) and hot dust (24 um emission) are compared. At the center of each bubble there is a region containing ionized gas and hot dust, surrounded by PAHs. We identify the likely source(s) of the stellar wind and ionizing flux producing each bubble based upon SED fitting to numerical hot stellar photosphere models. Candidate YSOs are also identified using SED fitting, including several sites of possible triggered star formation.Comment: 37 pages, 17 figure

    Early antenatal prediction of gestational diabetes in obese women: development of prediction tools for targeted intervention

    Get PDF
    All obese women are categorised as being of equally high risk of gestational diabetes (GDM) whereas the majority do not develop the disorder. Lifestyle and pharmacological interventions in unselected obese pregnant women have been unsuccessful in preventing GDM. Our aim was to develop a prediction tool for early identification of obese women at high risk of GDM to facilitate targeted interventions in those most likely to benefit. Clinical and anthropometric data and non-fasting blood samples were obtained at 15+0–18+6 weeks’ gestation in 1303 obese pregnant women from UPBEAT, a randomised controlled trial of a behavioural intervention. Twenty one candidate biomarkers associated with insulin resistance, and a targeted nuclear magnetic resonance (NMR) metabolome were measured. Prediction models were constructed using stepwise logistic regression. Twenty six percent of women (n = 337) developed GDM (International Association of Diabetes and Pregnancy Study Groups criteria). A model based on clinical and anthropometric variables (age, previous GDM, family history of type 2 diabetes, systolic blood pressure, sum of skinfold thicknesses, waist:height and neck:thigh ratios) provided an area under the curve of 0.71 (95%CI 0.68–0.74). This increased to 0.77 (95%CI 0.73–0.80) with addition of candidate biomarkers (random glucose, haemoglobin A1c (HbA1c), fructosamine, adiponectin, sex hormone binding globulin, triglycerides), but was not improved by addition of NMR metabolites (0.77; 95%CI 0.74–0.81). Clinically translatable models for GDM prediction including readily measurable variables e.g. mid-arm circumference, age, systolic blood pressure, HbA1c and adiponectin are described. Using a ≥35% risk threshold, all models identified a group of high risk obese women of whom approximately 50% (positive predictive value) later developed GDM, with a negative predictive value of 80%. Tools for early pregnancy identification of obese women at risk of GDM are described which could enable targeted interventions for GDM prevention in women who will benefit the most

    Interactions between brown-dwarf binaries and Sun-like stars

    Full text link
    Several mechanisms have been proposed for the formation of brown dwarfs, but there is as yet no consensus as to which -- if any -- are operative in nature. Any theory of brown dwarf formation must explain the observed statistics of brown dwarfs. These statistics are limited by selection effects, but they are becoming increasingly discriminating. In particular, it appears (a) that brown dwarfs that are secondaries to Sun-like stars tend to be on wide orbits, a\ga 100\,{\rm AU} (the Brown Dwarf Desert), and (b) that these brown dwarfs have a significantly higher chance of being in a close (a\la 10\,{\rm AU}) binary system with another brown dwarf than do brown dwarfs in the field. This then raises the issue of whether these brown dwarfs have formed {\it in situ}, i.e. by fragmentation of a circumstellar disc; or have formed elsewhere and subsequently been captured. We present numerical simulations of the purely gravitational interaction between a close brown-dwarf binary and a Sun-like star. These simulations demonstrate that such interactions have a negligible chance (<0.001<0.001) of leading to the close brown-dwarf binary being captured by the Sun-like star. Making the interactions dissipative by invoking the hydrodynamic effects of attendant discs might alter this conclusion. However, in order to explain the above statistics, this dissipation would have to favour the capture of brown-dwarf binaries over single brown-dwarfs, and we present arguments why this is unlikely. The simplest inference is that most brown-dwarf binaries -- and therefore possibly also most single brown dwarfs -- form by fragmentation of circumstellar discs around Sun-like protostars, with some of them subsequently being ejected into the field.Comment: 10 pages, 8 figures, Accepted for publication in Astrophysics and Space Scienc

    Collapse of Rotating Magnetized Molecular Cloud Cores and Mass Outflows

    Full text link
    Collapse of the rotating magnetized molecular cloud core is studied with the axisymmetric magnetohydrodynamical (MHD) simulations. Due to the change of the equation of state of the interstellar gas, the molecular cloud cores experience several different phases as collapse proce eds. In the isothermal run-away collapse (n≲1010H2cm−3n \lesssim 10^{10}{\rm H_2 cm}^{-3}), a pseudo-disk is formed and it continues to contract till the opaque core is fo rmed at the center. In this disk, a number of MHD fast and slow shock pairs appear running parallelly to the disk. After the equation of state becomes hard, an adiabatic core is formed, which is separated from the isothermal contracting pseudo-disk by the accretion shock front facing radially outwards. By the effect of the magnetic tension, the angular momentum is transferred from the disk mid-plane to the surface. The gas with excess angular momentum near the surface is finally ejected, which explains the molecular bipolar outflow. Two types of outflows are observed. When the poloidal magnetic field is strong (magnetic energy is comparable to the thermal one), a U-shaped outflow is formed in which fast moving gas is confined to the wall whose shape looks like a capit al letter U. The other is the turbulent outflow in which magnetic field lines and velocity fi elds are randomly oriented. In this case, turbulent gas moves out almost perpendicularly from the disk. The continuous mass accretion leads to the quasistatic contraction of the first core. A second collapse due to dissociation of H2_2 in the first core follows. Finally another quasistatic core is again formed by atomic hydrogen (the second core). It is found that another outflow is ejected around the second atomic core, which seems to correspond to the optical jets or the fast neutral winds.Comment: submitted to Ap

    The genetic organisation of prokaryotic two-component system signalling pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure.</p> <p>Results</p> <p>Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts.</p> <p>Conclusions</p> <p>We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, '<it>percentage orphaned TCS genes</it>' (or 'Dissemination') and '<it>percentage of complex loci</it>' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.</p

    Site amplification in the Kathmandu Valley during the 2015 M7.6 Gorkha, Nepal earthquake

    Get PDF
    The 25th April 2015 M7.6 Gorkha earthquake caused significant damage to buildings and infrastructure in both Kathmandu and surrounding areas as well as triggering numerous, large landslides. This resulted in the loss of approximately 8600 lives. In order to learn how the impact of such events can be reduced on communities both in Nepal and elsewhere, the Earthquake Engineering Field Investigation Team (EEFIT) reconnaissance mission was undertaken, aiming to look at damage patterns within the country. Passive, microtremor recordings in severely damaged areas of the Kathmandu Valley, as well as at the main seismic recording station in Kathmandu (USGS station KATNP) are used to determined preliminary shear wave velocity (Vs) profiles for each site. These profiles are converted into spectral acceleration using the input motion of the Gorkha earthquake. The results are limited, but show clear site amplification within the Siddhitol Region. The resulting ground motions exceed the design levels from the Nepalese Building Codes, indicating the need for site-specific hazard analysis and for revision of the building code to address the effect of site amplificatio
    • …
    corecore