25,165 research outputs found
Asymptotic shallow water models for internal waves in a two-fluid system with a free surface
In this paper, we derive asymptotic models for the propagation of two and
three-dimensional gravity waves at the free surface and the interface between
two layers of immiscible fluids of different densities, over an uneven bottom.
We assume the thickness of the upper and lower fluids to be of comparable size,
and small compared to the characteristic wavelength of the system (shallow
water regimes). Following a method introduced by Bona, Lannes and Saut based on
the expansion of the involved Dirichlet-to-Neumann operators, we are able to
give a rigorous justification of classical models for weakly and strongly
nonlinear waves, as well as interesting new ones. In particular, we derive
linearly well-posed systems in the so called Boussinesq/Boussinesq regime.
Furthermore, we establish the consistency of the full Euler system with these
models, and deduce the convergence of the solutions.Comment: 32 pages, 4 figure
Ageing and relaxation times in disordered insulators
We focus on the slow relaxations observed in the conductance of disordered
insulators at low temperature (especially granular aluminum films). They
manifest themselves as a temporal logarithmic decrease of the conductance after
a quench from high temperatures and the concomitant appearance of a field
effect anomaly centered on the gate voltage maintained. We are first interested
in ageing effects, i.e. the age dependence of the dynamical properties of the
system. We stress that the formation of a second field effect anomaly at a
different gate voltage is not a "history free" logarithmic (lnt) process, but
departs from lnt in a way which encodes the system's age. The apparent
relaxation time distribution extracted from the observed relaxations is thus
not "constant" but evolves with time. We discuss what defines the age of the
system and what external perturbation out of equilibrium does or does not
rejuvenate it. We further discuss the problem of relaxation times and comment
on the commonly used "two dip" experimental protocol aimed at extracting
"characteristic times" for the glassy systems (granular aluminum, doped indium
oxide...). We show that it is inoperable for systems like granular Al and
probably highly doped InOx where it provides a trivial value only determined by
the experimental protocol. But in cases where different values are obtained
like in lightly doped InOx or some ultra thin metal films, potentially
interesting information can be obtained, possibly about the "short time"
dynamics of the different systems. Present ideas about the effect of doping on
the glassiness of disordered insulators may also have to be reconsidered.Comment: to appear in the proceedings of the 14th International Conference on
Transport and Interactions in Disordered Systems (TIDS14
Multiple IMU system test plan, volume 4
Operating procedures for this redundant system are described. A test plan is developed with two objectives. First, performance of the hardware and software delivered is demonstrated. Second, applicability of multiple IMU systems to the space shuttle mission is shown through detailed experiments with FDI algorithms and other multiple IMU software: gyrocompassing, calibration, and navigation. Gimbal flip is examined in light of its possible detrimental effects on FDI and navigation. For Vol. 3, see N74-10296
Analytic thermodynamics and thermometry of Gaudin-Yang Fermi gases
We study the thermodynamics of a one-dimensional attractive Fermi gas (the
Gaudin-Yang model) with spin imbalance. The exact solution has been known from
the thermodynamic Bethe ansatz for decades, but it involves an infinite number
of coupled nonlinear integral equations whose physics is difficult to extract.
Here the solution is analytically reduced to a simple, powerful set of four
algebraic equations. The simplified equations become universal and exact in the
experimental regime of strong interaction and relatively low temperature. Using
the new formulation, we discuss the qualitative features of finite-temperature
crossover and make quantitative predictions on the density profiles in traps.
We propose a practical two-stage scheme to achieve accurate thermometry for a
trapped spin-imbalanced Fermi gas.Comment: 4 pages, 2 figures; published version (v2
Gauging kinematical and internal symmetry groups for extended systems: the Galilean one-time and two-times harmonic oscillators
The possible external couplings of an extended non-relativistic classical
system are characterized by gauging its maximal dynamical symmetry group at the
center-of-mass. The Galilean one-time and two-times harmonic oscillators are
exploited as models. The following remarkable results are then obtained: 1) a
peculiar form of interaction of the system as a whole with the external gauge
fields; 2) a modification of the dynamical part of the symmetry
transformations, which is needed to take into account the alteration of the
dynamics itself, induced by the {\it gauge} fields. In particular, the
Yang-Mills fields associated to the internal rotations have the effect of
modifying the time derivative of the internal variables in a scheme of minimal
coupling (introduction of an internal covariant derivative); 3) given their
dynamical effect, the Yang-Mills fields associated to the internal rotations
apparently define a sort of Galilean spin connection, while the Yang-Mills
fields associated to the quadrupole momentum and to the internal energy have
the effect of introducing a sort of dynamically induced internal metric in the
relative space.Comment: 32 pages, LaTex using the IOP preprint macro package (ioplppt.sty
available at: http://www.iop.org/). The file is available at:
http://www.fis.unipr.it/papers/1995.html The file is a uuencoded tar gzip
file with the IOP preprint style include
Locating a weak change using diffuse waves (LOCADIFF) : theoretical approach and inversion procedure
We describe a time-resolved monitoring technique for heterogeneous media. Our
approach is based on the spatial variations of the cross-coherence of coda
waveforms acquired at fixed positions but at different dates. To locate and
characterize a weak change that occurred between successive acquisitions, we
use a maximum likelihood approach combined with a diffusive propagation model.
We illustrate this technique, called LOCADIFF, with numerical simulations. In
several illustrative examples, we show that the change can be located with a
precision of a few wavelengths and its effective scattering cross-section can
be retrieved. The precision of the method depending on the number of source
receiver pairs, time window in the coda, and errors in the propagation model is
investigated. Limits of applications of the technique to real-world experiments
are discussed.Comment: 11 pages, 14 figures, 1 tabl
Numerical simulations of string networks in the Abelian-Higgs model
We present the results of a field theory simulation of networks of strings in
the Abelian Higgs model. Starting from a random initial configuration we show
that the resulting vortex tangle approaches a self-similar regime in which the
length density of lines of zeros of reduces as . We demonstrate
that the network loses energy directly into scalar and gauge radiation. These
results support a recent claim that particle production, and not gravitational
radiation, is the dominant energy loss mechanism for cosmic strings. This means
that cosmic strings in Grand Unified Theories are severely constrained by high
energy cosmic ray fluxes: either they are ruled out, or an implausibly small
fraction of their energy ends up in quarks and leptons.Comment: 4pp RevTeX, 3 eps figures, clarifications and new results included,
to be published in Phys. Rev. Let
- âŠ