1,307 research outputs found

    Influence of reheating on the trispectrum and its scale dependence

    Get PDF
    We study the evolution of the non-linear curvature perturbation during perturbative reheating, and hence how observables evolve to their final values which we may compare against observations. Our study includes the evolution of the two trispectrum parameters, \gnl and \taunl, as well as the scale dependence of both \fnl and \taunl. In general the evolution is significant and must be taken into account, which means that models of multifield inflation cannot be compared to observations without specifying how the subsequent reheating takes place. If the trispectrum is large at the end of inflation, it normally remains large at the end of reheating. In the classes of models we study, it is very hard to generate \taunl\gg\fnl^2, regardless of the decay rates of the fields. Similarly, for the classes of models in which \gnl\simeq\taunl during slow--roll inflation, we find the relation typically remains valid during reheating. Therefore it is possible to observationally test such classes of models without specifying the parameters of reheating, even though the individual observables are sensitive to the details of reheating. It is hard to generate an observably large \gnl however. The runnings, \nfnl and \ntaunl, tend to satisfy a consistency relation \ntaunl=(3/2)\nfnl, but are in general too small to be observed for the class of models considered regardless of reheating timescale

    Generation of helical magnetic fields from inflation

    Full text link
    The generation of helical magnetic fields during single field inflation due to an axial coupling of the electromagnetic field to the inflaton is discussed. We find that such a coupling always leads to a blue spectrum of magnetic fields during slow roll inflation. Though the helical magnetic fields further evolve during the inverse cascade in the radiation era after inflation, we conclude that the magnetic fields generated by such an axial coupling can not lead to observed field strength on cosmologically relevant scales.Comment: 4 pages, 1 figure; Contribution to the proceedings of the International Conference on Gravitation and Cosmology (ICGC), Goa, India, December, 201

    Extended Timed Up and Go assessment as a clinical indicator of cognitive state in Parkinson\u27s disease

    Get PDF
    Objective: To evaluate a modified extended Timed Up and Go (extended-TUG) assessment against a panel of validated clinical assessments, as an indicator of Parkinson’s disease (PD) severity and cognitive impairment. Methods: Eighty-seven participants with idiopathic PD were sequentially recruited from a Movement Disorders Clinic. An extended-TUG assessment was employed which required participants to stand from a seated position, walk in a straight line for 7 metres, turn 180 degrees and then return to the start, in a seated position. The extended-TUG assessment duration was correlated to a panel of clinical assessments, including the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Quality of Life (PDQ-39), Scales for Outcomes in Parkinson’s disease (SCOPA-Cog), revised Addenbrooke’s Cognitive Index (ACE-R) and Barratt’s Impulsivity Scale 11 (BIS-11). Results: Extended-TUG time was significantly correlated to MDS-UPDRS III score and to SCOPA-Cog, ACE-R (p\u3c0.001) and PDQ-39 scores (p\u3c0.01). Generalized linear models determined the extended-TUG to be a sole variable in predicting ACE-R or SCOPA-Cog scores. Patients in the fastest extended-TUG tertile were predicted to perform 8.3 and 13.4 points better in the SCOPA-Cog and ACE-R assessments, respectively, than the slowest group. Patients who exceeded the dementia cut-off scores with these instruments exhibited significantly longer extended-TUG times. Conclusions: Extended-TUG performance appears to be a useful indicator of cognition as well as motor function and quality of life in PD, and warrants further evaluation as a first line assessment tool to monitor disease severity and response to treatment. Poor extended-TUG performance may identify patients without overt cognitive impairment form whom cognitive assessment is needed

    Implications of the cosmic microwave background power asymmetry for the early universe

    Get PDF
    Observations of the microwave background fluctuations suggest a scale-dependent amplitude asymmetry of roughly 2.5 sigma significance. Inflationary explanations for this 'anomaly' require non-Gaussian fluctuations which couple observable modes to those on much larger scales. In this Letter we describe an analysis of such scenarios which significantly extends previous treatments. We identify the non-Gaussian 'response function' which characterizes the asymmetry, and show that it is non-trivial to construct a model which yields a sufficient amplitude: many independent fine tunings are required, often making such models appear less likely than the anomaly they seek to explain. We present an explicit model satisfying observational constraints and determine for the first time how large its bispectrum would appear to a Planck-like experiment. Although this model is merely illustrative, we expect it is a good proxy for the bispectrum in a sizeable class of models which generate a scale-dependent response using a large eta parameter.Comment: 5 pages. v2: Minor changes to match version published in Phys. Rev.

    An Application of Feynman-Kleinert Approximants to the Massive Schwinger Model on a Lattice

    Get PDF
    A trial application of the method of Feynman-Kleinert approximants is made to perturbation series arising in connection with the lattice Schwinger model. In extrapolating the lattice strong-coupling series to the weak-coupling continuum limit, the approximants do not converge well. In interpolating between the continuum perturbation series at large fermion mass and small fermion mass, however, the approximants do give good results. In the course of the calculations, we picked up and rectified an error in an earlier derivation of the continuum series coefficients.Comment: 16 pages, 4 figures, 5 table

    Local non-Gaussianity from inflation

    Get PDF
    The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.Comment: 21 pages, 1 figure, invited review to appear in Classical and Quantum Gravity special issue on non-linear and non-Gaussian cosmological perturbation

    Signatures of Primordial non-Gaussianities in the Matter Power-Spectrum and Bispectrum: the Time-RG Approach

    Get PDF
    We apply the time-renormalization group approach to study the effect of primordial non-Gaussianities in the non-linear evolution of cosmological dark matter density perturbations. This method improves the standard perturbation approach by solving renormalization group-like equations governing the dynamics of gravitational instability. The primordial bispectra constructed from the dark matter density contrast and the velocity fields represent initial conditions for the renormalization group flow. We consider local, equilateral and folded shapes for the initial non-Gaussianity and analyze as well the case in which the non-linear parameter f_{NL} parametrizing the strength of the non-Gaussianity depends on the momenta in Fourier space through a power-law relation, the so-called running non-Gaussianity. For the local model of non-Gaussianity we compare our findings for the power-spectrum with those of recent N-body simulations and find that they accurately fit the N-body data up to wave-numbers k \sim 0.25 h/Mpc at z=0. We also present predictions for the (reduced) matter bispectra for the various shapes of non-Gaussianity.Comment: 27 pages, 12 figures. Results and discussion for a particular case added. One figure and one reference added. Matches with the version accepted for publication in the JCAP

    Scale Dependence of the Halo Bias in General Local-Type Non-Gaussian Models I: Analytical Predictions and Consistency Relations

    Full text link
    We investigate the clustering of halos in cosmological models starting with general local-type non-Gaussian primordial fluctuations. We employ multiple Gaussian fields and add local-type non-Gaussian corrections at arbitrary order to cover a class of models described by frequently-discussed f_nl, g_nl and \tau_nl parameterization. We derive a general formula for the halo power spectrum based on the peak-background split formalism. The resultant spectrum is characterized by only two parameters responsible for the scale-dependent bias at large scale arising from the primordial non-Gaussianities in addition to the Gaussian bias factor. We introduce a new inequality for testing non-Gaussianities originating from multi fields, which is directly accessible from the observed power spectrum. We show that this inequality is a generalization of the Suyama-Yamaguchi inequality between f_nl and \tau_nl to the primordial non-Gaussianities at arbitrary order. We also show that the amplitude of the scale-dependent bias is useful to distinguish the simplest quadratic non-Gaussianities (i.e., f_nl-type) from higher-order ones (g_nl and higher), if one measures it from multiple species of galaxies or clusters of galaxies. We discuss the validity and limitations of our analytic results by comparison with numerical simulations in an accompanying paper.Comment: 25 pages, 3 figures, typo corrected, Appendix C updated, submitted to JCA

    The Berwald-type linearisation of generalised connections

    Get PDF
    We study the existence of a natural `linearisation' process for generalised connections on an affine bundle. It is shown that this leads to an affine generalised connection over a prolonged bundle, which is the analogue of what is called a connection of Berwald type in the standard theory of connections. Various new insights are being obtained in the fine structure of affine bundles over an anchored vector bundle and affineness of generalised connections on such bundles.Comment: 25 page

    Trispectrum from Ghost Inflation

    Full text link
    Ghost inflation predicts almost scale-invariant primordial cosmological perturbations with relatively large non-Gaussianity. The bispectrum is known to have a large contribution at the wavenumbers forming an equilateral triangle and the corresponding nonlinear parameter fNLequilf_{NL}^{equil} is typically of order O(102)O(10^2). In this paper we calculate trispectrum from ghost inflation and show that the corresponding nonlinear parameter Ď„NL\tau_{NL} is typically of order O(104)O(10^4). We investigate the shape dependence of the trispectrum and see that it has some features different from DBI inflation. Therefore, our result may be useful as a template to distinguish ghost inflation from other models of inflation by future experiments.Comment: 25 pages, 10 figure
    • …
    corecore