64 research outputs found

    Condensation transition in a model with attractive particles and non-local hops

    Full text link
    We study a one dimensional nonequilibrium lattice model with competing features of particle attraction and non-local hops. The system is similar to a zero range process (ZRP) with attractive particles but the particles can make both local and non-local hops. The length of the non-local hop is dependent on the occupancy of the chosen site and its probability is given by the parameter pp. Our numerical results show that the system undergoes a phase transition from a condensate phase to a homogeneous density phase as pp is increased beyond a critical value pcp_c. A mean-field approximation does not predict a phase transition and describes only the condensate phase. We provide heuristic arguments for understanding the numerical results.Comment: 11 Pages, 6 Figures. Published in Journal of Statistical Mechanics: Theory and Experimen

    Exact Solution of an Exclusion Model in the Presence of a moving Impurity

    Full text link
    We study a recently introduced model which consists of positive and negative particles on a ring. The positive (negative) particles hop clockwise (counter-clockwise) with rate 1 and oppositely charged particles may swap their positions with asymmetric rates q and 1. In this paper we assume that a finite density of positively charged particles ρ\rho and only one negative particle (which plays the role of an impurity) exist on the ring. It turns out that the canonical partition function of this model can be calculated exactly using Matrix Product Ansatz (MPA) formalism. In the limit of infinite system size and infinite number of positive particles, we can also derive exact expressions for the speed of the positive and negative particles which show a second order phase transition at qc=2ρq_c=2\rho. The density profile of the positive particles on the ring has a shock structure for qqcq \leq q_c and an exponential behaviour with correlation length ξ\xi for qqcq \geq q_c. It will be shown that the mean-field results become exact at q=3 and no phase transition occurs for q>2.Comment: 9 pages,4 EPS figures. To be appear in JP

    Boundary-induced abrupt transition in the symmetric exclusion process

    Full text link
    We investigate the role of the boundary in the symmetric simple exclusion process with competing nonlocal and local hopping events. With open boundaries, the system undergoes a first order phase transition from a finite density phase to an empty road phase as the nonlocal hopping rate increases. Using a cluster stability analysis, we determine the location of such an abrupt nonequilibrium phase transition, which agrees well with numerical results. Our cluster analysis provides a physical insight into the mechanism behind this transition. We also explain why the transition becomes discontinuous in contrast to the case with periodic boundary conditions, in which the continuous phase transition has been observed.Comment: 8 pages, 11 figures (12 eps files); revised as the publised versio

    Phase transition in conservative diffusive contact processes

    Full text link
    We determine the phase diagrams of conservative diffusive contact processes by means of numerical simulations. These models are versions of the ordinary diffusive single-creation, pair-creation and triplet-creation contact processes in which the particle number is conserved. The transition between the frozen and active states was determined by studying the system in the subcritical regime and the nature of the transition, whether continuous or first order, was determined by looking at the fractal dimension of the critical cluster. For the single-creation model the transition remains continuous for any diffusion rate. For pair- and triplet-creation models, however, the transition becomes first order for high enough diffusion rate. Our results indicate that in the limit of infinite diffusion rate the jump in density equals 2/3 for the pair-creation model and 5/6 for the triplet-creation model

    Nonequilibrium Phase Transitions in a Driven Sandpile Model

    Get PDF
    We construct a driven sandpile slope model and study it by numerical simulations in one dimension. The model is specified by a threshold slope \sigma_c\/, a parameter \alpha\/, governing the local current-slope relation (beyond threshold), and jinj_{\rm in}, the mean input current of sand. A nonequilibrium phase diagram is obtained in the \alpha\, -\, j_{\rm in}\/ plane. We find an infinity of phases, characterized by different mean slopes and separated by continuous or first-order boundaries, some of which we obtain analytically. Extensions to two dimensions are discussed.Comment: 11 pages, RevTeX (preprint format), 4 figures available upon requs

    Hard rod gas with long-range interactions: Exact predictions for hydrodynamic properties of continuum systems from discrete models

    Get PDF
    One-dimensional hard rod gases are explicitly constructed as the limits of discrete systems: exclusion processes involving particles of arbitrary length. Those continuum many-body systems in general do not exhibit the same hydrodynamic properties as the underlying discrete models. Considering as examples a hard rod gas with additional long-range interaction and the generalized asymmetric exclusion process for extended particles (\ell-ASEP), it is shown how a correspondence between continuous and discrete systems must be established instead. This opens up a new possibility to exactly predict the hydrodynamic behaviour of this continuum system under Eulerian scaling by solving its discrete counterpart with analytical or numerical tools. As an illustration, simulations of the totally asymmetric exclusion process (\ell-TASEP) are compared to analytical solutions of the model and applied to the corresponding hard rod gas. The case of short-range interaction is treated separately.Comment: 19 pages, 8 figure

    Diffusion of Tagged Particle in an Exclusion Process

    Full text link
    We study the diffusion of tagged hard core interacting particles under the influence of an external force field. Using the Jepsen line we map this many particle problem onto a single particle one. We obtain general equations for the distribution and the mean square displacement of the tagged center particle valid for rather general external force fields and initial conditions. A wide range of physical behaviors emerge which are very different than the classical single file sub-diffusion $ \sim t^{1/2}$ found for uniformly distributed particles in an infinite space and in the absence of force fields. For symmetric initial conditions and potential fields we find $ = {{\cal R} (1 - {\cal R})\over 2 N {\it r} ^2} $ where $2 N$ is the (large) number of particles in the system, ${\cal R}$ is a single particle reflection coefficient obtained from the single particle Green function and initial conditions, and $r$ its derivative. We show that this equation is related to the mathematical theory of order statistics and it can be used to find even when the motion between collision events is not Brownian (e.g. it might be ballistic, or anomalous diffusion). As an example we derive the Percus relation for non Gaussian diffusion

    p-species integrable reaction-diffusion processes

    Full text link
    We consider a process in which there are p-species of particles, i.e. A_1,A_2,...,A_p, on an infinite one-dimensional lattice. Each particle AiA_i can diffuse to its right neighboring site with rate DiD_i, if this site is not already occupied. Also they have the exchange interaction A_j+A_i --> A_i+A_j with rate rij.r_{ij}. We study the range of parameters (interactions) for which the model is integrable. The wavefunctions of this multi--parameter family of integrable models are found. We also extend the 2--species model to the case in which the particles are able to diffuse to their right or left neighboring sites.Comment: 16 pages, LaTe

    Critical Exponents of the KPZ Equation via Multi-Surface Coding Numerical Simulations

    Full text link
    We study the KPZ equation (in D = 2, 3 and 4 spatial dimensions) by using a RSOS discretization of the surface. We measure the critical exponents very precisely, and we show that the rational guess is not appropriate, and that 4D is not the upper critical dimension. We are also able to determine very precisely the exponent of the sub-leading scaling corrections, that turns out to be close to 1 in all cases. We introduce and use a {\em multi-surface coding} technique, that allow a gain of order 30 over usual numerical simulations.Comment: 10 pages, 8 eps figures (2 figures added). Published versio

    On the solvable multi-species reaction-diffusion processes

    Full text link
    A family of one-dimensional multi-species reaction-diffusion processes on a lattice is introduced. It is shown that these processes are exactly solvable, provided a nonspectral matrix equation is satisfied. Some general remarks on the solutions to this equation, and some special solutions are given. The large-time behavior of the conditional probabilities of such systems are also investigated.Comment: 13 pages, LaTeX2
    corecore