91 research outputs found

    Si-compatible candidates for high-K dielectrics with the Pbnm perovskite structure

    Full text link
    We analyze both experimentally (where possible) and theoretically from first-principles the dielectric tensor components and crystal structure of five classes of Pbnm perovskites. All of these materials are believed to be stable on silicon and are therefore promising candidates for high-K dielectrics. We also analyze the structure of these materials with various simple models, decompose the lattice contribution to the dielectric tensor into force constant matrix eigenmode contributions, explore a peculiar correlation between structural and dielectric anisotropies in these compounds and give phonon frequencies and infrared activities of those modes that are infrared-active. We find that CaZrO_3, SrZrO_3, LaHoO_3, and LaYO_3 are among the most promising candidates for high-K dielectrics among the compounds we considered.Comment: 17 pages, 9 figures, 4 tables. Supplementary information: http://link.aps.org/supplemental/10.1103/PhysRevB.82.064101 or http://www.physics.rutgers.edu/~sinisa/highk/supp.pd

    Measuring Success for a Future Vision: Defining Impact in Science Gateways/Virtual Research Environments

    Get PDF
    Scholars worldwide leverage science gateways/VREs for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this paper, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of e.g., their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next-generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE-IG) of the Research Data Alliance. Thus, community-driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations

    Deletion of growth hormone receptor gene but not visceral fat removal decreases expression of apoptosis-related genes in the kidney—potential mechanism of lifespan extension

    Get PDF
    Mice homozygous for the targeted disruption of the growth hormone (GH) receptor (Ghr) gene (GH receptor knockout; GHRKO; KO) are hypoinsulinemic, highly insulin sensitive, normoglycemic, and long-lived. Visceral fat removal (VFR) is a surgical intervention which improves insulin signaling in normal (N) mice and rats and extends longevity in rats. We have previously demonstrated decreased expression level of certain pro-apoptotic genes in skeletal muscles and suggested that this may contribute to the regulation of longevity in GHRKO mice. Alterations in apoptosis-related genes expression in the kidneys also may potentially lead to lifespan extension. In this context, we decided to examine the renal expression of the following genes: caspase-3, caspase-9, caspase-8, bax, bad, bcl-2, Smac/DIABLO, Apaf-1, p53, and cytochrome c1 (cyc1) in male GHRKO and N mice subjected to VFR or sham surgery, at approximately 6 months of age. The kidneys were collected 2 months after VFR. As a result, caspase-3, caspase-9, and bax expressions were decreased in KO mice as compared to N animals. Expressions of Smac/DIABLO, caspase-8, bcl-2, bad, and p53 did not differ between KOs and N mice. VFR did not change the expression of the examined genes in KO or N mice. In conclusion, endocrine abnormalities in GHRKO mice result in decreased expression of pro-apoptotic genes and VFR did not alter the examined genes expression in N and KO mice. These data are consistent with a model in which alterations of GH signaling and/or insulin sensitivity lead to increased lifespan mediated by decreased renal expression of pro-apoptotic genes

    Exercise Improves Cognitive Responses to Psychological Stress through Enhancement of Epigenetic Mechanisms and Gene Expression in the Dentate Gyrus

    Get PDF
    Background We have shown previously that exercise benefits stress resistance and stress coping capabilities. Furthermore, we reported recently that epigenetic changes related to gene transcription are involved in memory formation of stressful events. In view of the enhanced coping capabilities in exercised subjects we investigated epigenetic, gene expression and behavioral changes in 4-weeks voluntarily exercised rats. Methodology/Principal Findings Exercised and control rats coped differently when exposed to a novel environment. Whereas the control rats explored the new cage for the complete 30-min period, exercised animals only did so during the first 15 min after which they returned to sleeping or resting behavior. Both groups of animals showed similar behavioral responses in the initial forced swim session. When re-tested 24 h later however the exercised rats showed significantly more immobility behavior and less struggling and swimming. If rats were killed at 2 h after novelty or the initial swim test, i.e. at the peak of histone H3 phospho-acetylation and c-Fos induction, then the exercised rats showed a significantly higher number of dentate granule neurons expressing the histone modifications and immediate-early gene induction. Conclusions/Significance Thus, irrespective of the behavioral response in the novel cage or initial forced swim session, the impact of the event at the dentate gyrus level was greater in exercised rats than in control animals. Furthermore, in view of our concept that the neuronal response in the dentate gyrus after forced swimming is involved in memory formation of the stressful event, the observations in exercised rats of enhanced neuronal responses as well as higher immobility responses in the re-test are consistent with the reportedly improved cognitive performance in these animals. Thus, improved stress coping in exercised subjects seems to involve enhanced cognitive capabilities possibly resulting from distinct epigenetic mechanisms in dentate gyrus neurons

    The scandium effect in multicomponent alloys

    Get PDF
    Despite its excellent elemental properties, lightweight nature and good alloying potential, scandium has received relatively little attention in the manufacturing community. The abundance of scandium in the Earth's crust is quite high. It is more abundant than silver, cobalt, lead and tin. But, because scandium is so well dispersed in the lithosphere, it is notoriously difficult to extract in commercial quantities – hence low market availability and high cost. Scandium metallurgy is still a largely unexplored field – but progress is being made. This review aims to summarise advances in scandium metallurgical research over the last decade. The use of scandium as a conventional minor addition to alloys, largely in structural applications, is described. Also, more futuristic functional applications are discussed where details of crystal structures and peculiar symmetries are often of major importance. This review also includes data obtained from more obscure sources (especially Russian publications) which are much less accessible to the wider community. It is clear that more fundamental research is required to elevate the status of scandium from a laboratory-based curiosity to a mainstream alloying element. This is largely uncharted territory. There is much to be discovered
    • …
    corecore