893 research outputs found

    Soil aeration - The relationship between redox potential and air-filled pores

    Get PDF
    Soil water contents are variable with impact on oxygen diffusion rates and redox potentials (EH). When water saturated soils become aerated, a switch from reducing to oxidizing conditions occurs. However, only limited information are available at which air-filled pore volume (ε) this dramatic shift happens. Therefore, undisturbed soil cores were taken by steel cylinders from the topsoils of a Fluvisol and a Gleysol that differed in soil structure and clay content. After submergence in the laboratory, the samples were sealed by a glass dome to exclude oxygen and to achieve strongly reducing conditions (EH < -100 mV). We aerated the sample on demand by removal of glass plugs in the dome and consecutively measured EH by platinum-(Pt) tipped electrodes and ε by pressure head readings on hourly basis. We propose to use the terms: i) εPt reaction, to indicate the air-filled pore volume at which a response of the Pt-tipped electrode due to contact with oxygen occurs (i.e., EH increase > 5 mV h-1), and ii) εPt aeration, to indicate when oxidizing soil conditions are present (i.e., EH > 300 mV at pH 7). These characteristic εPt reaction values were at 0.036±0.013 cm3 cm–3 for the Fluvisol and at 0.048±0.017 cm3 cm–3 for the Gleysol whereas εPt aeration values were at 0.047±0.005 and at 0.085±0.002 cm3 cm–3, respectively. This study provided important information to determine the aeration status of a soil when, e.g., ε is known but EH measurements are absent

    Narratives of Black Women STEM Faculty: Breaking Barriers to Promote Institutional Transformation at Historically Black Colleges and Universities

    Get PDF
    Women faculty at Historically Black Colleges and Universities (HBCUs), experience many barriers. HBCUs’ rich histories of advancing racial equity have often outweighed a focus on gender equity, with issues at the intersection of race and gender receiving minimal attention. This study highlights the need for institutional transformation at HBCUs by identifying the structural factors that promote and inhibit Black women STEM faculty advancement. Interviews (n=15) were conducted with HBCU Black women STEM faculty using the Life Interview approach. The three major themes related to barriers included: (a) greater likelihood of having their expertise questioned, (b) increased pressure to work harder, and (c) sexism, racism, and gendered racism. This study expands upon existing research in the literature by focusing on an understudied population, Black women STEM faculty at HBCUs. Findings suggest that to advance institutional transformation diversity, equity, and inclusion goals, colleges and universities must establish infrastructures that include supports of benefit to the professional advancement of all faculty

    A Statistical Model for Assessing Genetic Susceptibility as a Risk Factor in Multifactorial Diseases: Lessons from Occupational Asthma

    Get PDF
    BACKGROUND: Incorporating the influence of genetic variation in the risk assessment process is often considered, but no generalized approach exists. Many common human diseases such as asthma, cancer, and cardiovascular disease are complex in nature, as they are influenced variably by environmental, physiologic, and genetic factors. The genetic components most responsible for differences in individual disease risk are thought to be DNA variants (polymorphisms) that influence the expression or function of mediators involved in the pathological processes. OBJECTIVE: The purpose of this study was to estimate the combinatorial contribution of multiple genetic variants to disease risk. METHODS: We used a logistic regression model to help estimate the joint contribution that multiple genetic variants would have on disease risk. This model was developed using data collected from molecular epidemiology studies of allergic asthma that examined variants in 16 susceptibility genes. RESULTS: Based on the product of single gene variant odds ratios, the risk of developing asthma was assigned to genotype profiles, and the frequency of each profile was estimated for the general population. Our model predicts that multiple disease variants broaden the risk distribution, facilitating the identification of susceptible populations. This model also allows for incorporation of exposure information as an independent variable, which will be important for risk variants associated with specific exposures. CONCLUSION: The present model provided an opportunity to estimate the relative change in risk associated with multiple genetic variants. This will facilitate identification of susceptible populations and help provide a framework to model the genetic contribution in probabilistic risk assessment

    Colonic Patch and colonic SILT development are independent and differentially-regulated events

    Get PDF
    Intestinal lymphoid tissues have to simultaneously ensure protection against pathogens and tolerance towards commensals. Despite such vital functions, their development in the colon is poorly understood. Here, we show that the two distinct lymphoid tissues of the colon–colonic patches and colonic SILTs–can easily be distinguished based on anatomical location, developmental timeframe and cellular organization. Furthermore, whereas colonic patch development depended on CXCL13-mediated LTi cell clustering followed by LTα-mediated consolidation, early LTi clustering at SILT anlagen did not require CXCL13, CCR6 or CXCR3. Subsequent dendritic cell recruitment to and gp38+VCAM-1+ lymphoid stromal cell differentiation within SILTs required LTα; B cell recruitment and follicular dendritic cell differentiation depended on MyD88-mediated signalling, but not the microflora. In conclusion, our data demonstrate that different mechanisms, mediated mainly by programmed stimuli, induce the formation of distinct colonic lymphoid tissues, therefore suggesting that these tissues may have different functions

    Breaking Patterns of Environmentally Influenced Disease for Health Risk Reduction: Immune Perspectives

    Get PDF
    Diseases rarely, if ever, occur in isolation. Instead, most represent part of a more complex web or “pattern� of conditions that are connected via underlying biological mechanisms and processes, emerge across a lifetime, and have been identified with the aid of large medical databases. Objective We have described how an understanding of patterns of disease may be used to develop new strategies for reducing the prevalence and risk of major immune-based illnesses and diseases influenced by environmental stimuli. Findings Examples of recently defined patterns of diseases that begin in childhood include not only metabolic syndrome, with its characteristics of inflammatory dysregulation, but also allergic, autoimmune, recurrent infection, and other inflammatory patterns of disease. The recent identification of major immune-based disease patterns beginning in childhood suggests that the immune system may play an even more important role in determining health status and health care needs across a lifetime than was previously understood. Conclusions Focusing on patterns of disease, as opposed to individual conditions, offers two important venues for environmental health risk reduction. First, prevention of developmental immunotoxicity and pediatric immune dysfunction can be used to act against multiple diseases. Second, pattern-based treatment of entryway diseases can be tailored with the aim of disrupting the entire disease pattern and reducing the risk of later-life illnesses connected to underlying immune dysfunction. Disease-pattern–based evaluation, prevention, and treatment will require a change from the current approach for both immune safety testing and pediatric disease management

    Neutralizing anti-HIV antibodies develop in a humanized

    Get PDF
    From AIDS Vaccine 2012, Boston, MA, USA. 9-12 September 2012.Background: In BLT (bone marrow-liver-thymus) humanized mice, human thymocytes are educated by autologous human thymic tissue, resulting in functional human T cells capable of rapidly selecting for CTL escape mutations in HIV. In contrast, limitations to B cell maturation have been noted. But despite this, we show for the first time that HIV infected BLT mice can produce class-switched anti-HIV antibodies with neutralizing activities. Methods: Humanized BLT mice were generated by transplanting irradiated NOD-scid/IL2rgnull (NSG) mice with fetal thymus and liver fragments and then injecting them with autologous human CD34+ stem cells. BLT mice were then infected with HIVJRCSF and bled at various time-points. HIV neutralizing activity was measured using Tat-induced luciferase reporter TZM-bl cells. Results: Human transitional B cells were present in greater frequencies in BLT mice than adult humans. Most of these cells had a T1 phenotype in the blood and spleen. But despite this B cell maturation defect, class-switched IgG Abs against various HIV proteins were detected by Western Blot in HIV-infected BLT mice. Using ELISA to determine anti-p24 IgG Ab titers, Abs were present as early as 8 weeks post infection (p.i.), with peak Ab titers seen after 15 weeks. One infected mouse demonstrated a peak titer similar to that seen in a chronically infected human. Finally, plasma samples from infected BLT mice after 22 weeks p.i. demonstrated neutralizing activities against the challenge virus. Average IC50 neutralizing titers in these mice were similar to those from infected human samples. Conclusion: The ability of humanized BLT mice to generate functional humoral immune responses may be further improved by strategies to improve their B cell maturation, which will further improve the potential of these mice to become a model system to study candidate HIV vaccines and therapies

    The humanized BLT mouse to study HIV transmission

    Get PDF
    corecore