8,586 research outputs found

    Review of available synchronization and time distribution techniques

    Get PDF
    The methods of synchronizing precision clocks will be reviewed placing particular attention to the simpler techniques, their accuracies, and the approximate cost of equipment. The more exotic methods of synchronization are discussed in lesser detail. The synchronization techniques that will be covered will include satellite dissemination, communication and navigation transmissions via VLF, LF, HF, UHF and microwave as well as commercial and armed forces television. Portable clock trips will also be discussed

    High performance, high density hydrocarbon fuels

    Get PDF
    The fuels were selected from 77 original candidates on the basis of estimated merit index and cost effectiveness. The ten candidates consisted of 3 pure compounds, 4 chemical plant streams and 3 refinery streams. Critical physical and chemical properties of the candidate fuels were measured including heat of combustion, density, and viscosity as a function of temperature, freezing points, vapor pressure, boiling point, thermal stability. The best all around candidate was found to be a chemical plant olefin stream rich in dicyclopentadiene. This material has a high merit index and is available at low cost. Possible problem areas were identified as low temperature flow properties and thermal stability. An economic analysis was carried out to determine the production costs of top candidates. The chemical plant and refinery streams were all less than 44 cent/kg while the pure compounds were greater than 44 cent/kg. A literature survey was conducted on the state of the art of advanced hydrocarbon fuel technology as applied to high energy propellents. Several areas for additional research were identified

    Successful retrieval of competing spatial environments in humans involves hippocampal pattern separation mechanisms.

    Get PDF
    The rodent hippocampus represents different spatial environments distinctly via changes in the pattern of "place cell" firing. It remains unclear, though, how spatial remapping in rodents relates more generally to human memory. Here participants retrieved four virtual reality environments with repeating or novel landmarks and configurations during high-resolution functional magnetic resonance imaging (fMRI). Both neural decoding performance and neural pattern similarity measures revealed environment-specific hippocampal neural codes. Conversely, an interfering spatial environment did not elicit neural codes specific to that environment, with neural activity patterns instead resembling those of competing environments, an effect linked to lower retrieval performance. We find that orthogonalized neural patterns accompany successful disambiguation of spatial environments while erroneous reinstatement of competing patterns characterized interference errors. These results provide the first evidence for environment-specific neural codes in the human hippocampus, suggesting that pattern separation/completion mechanisms play an important role in how we successfully retrieve memories

    Non-adiabatic pumping in an oscillating-piston model

    Full text link
    We consider the prototypical "piston pump" operating on a ring, where a circulating current is induced by means of an AC driving. This can be regarded as a generalized Fermi-Ulam model, incorporating a finite-height moving wall (piston) and non trivial topology (ring). The amount of particles transported per cycle is determined by a layered structure of phase-space. Each layer is characterized by a different drift velocity. We discuss the differences compared with the adiabatic and Boltzmann pictures, and highlight the significance of the "diabatic" contribution that might lead to a counter-stirring effect.Comment: 6 pages, 4 figures, improved versio

    In the Trenches of Real-World Self-Control: Neural Correlates of Breaking the Link Between Craving and Smoking

    Get PDF
    Successful goal pursuit involves repeatedly engaging self-control against temptations or distractions that arise along the way. Laboratory studies have identified the brain systems recruited during isolated instances of self-control, and ecological studies have linked self-control capacity to goal outcomes. However, no study has identified the neural systems of everyday self-control during long-term goal pursuit. The present study integrated neuroimaging and experience-sampling methods to investigate the brain systems of successful self-control among smokers attempting to quit. A sample of 27 cigarette smokers completed a go/no-go task during functional magnetic resonance imaging before they attempted to quit smoking and then reported everyday self-control using experience sampling eight times daily for 3 weeks while they attempted to quit. Increased activation in right inferior frontal gyrus, pre-supplementary motor area, and basal ganglia regions of interest during response inhibition at baseline was associated with an attenuated association between cravings and subsequent smoking. These findings support the ecological validity of neurocognitive tasks as indices of everyday response inhibition

    Interactive Effects of Three Core Goal Pursuit Processes on Brain Control Systems: Goal Maintenance, Performance Monitoring, and Response Inhibition

    Get PDF
    Goal attainment relies in part on one’s ability to maintain a cognitive representation of the desired goal (goal maintenance), monitor the current state vis-à-vis the targeted end state and remain vigilant for lapses in progress (performance monitoring), and inhibit counter-goal behaviors (response inhibition). Because neurocognitive studies have typically examined these three processes in isolation from one another, little is known regarding if and how they interact during goal pursuit. However, these processes frequently co-occur during online, real-world goal pursuit. The present study employed a novel task to investigate how goal maintenance, performance monitoring, and response inhibition interact with one another. We identified functional activations distinct to each of the processes that correspond to results of prior investigations. In addition, we report interactive effects between response inhibition and goal maintenance in the dorsal anterior cingulate cortex and between performance monitoring and goal maintenance in the superior frontal gyrus and supramarginal gyrus. Implications for studying the neural systems of in situ goals include the need for both experimental designs that distinguish between process, but also more complex, realistic tasks to begin to map interactions among these neurocognitive processes and how they are altered by the presence or absence of one another

    From Neural Responses to Population Behavior: Neural Focus Group Predicts Population-Level Media Effects

    Get PDF
    Can neural responses of a small group of individuals predict the behavior of large-scale populations? In this investigation, brain activations were recorded while smokers viewed three different television campaigns promoting the National Cancer Institute’s telephone hotline to help smokers quit (1-800-QUIT-NOW). The smokers also provided self-report predictions of the campaigns’ relative effectiveness. Population measures of the success of each campaign were computed by comparing call volume to 1-800-QUIT-NOW in the month before and the month after the launch of each campaign. This approach allowed us to directly compare the predictive value of self-reports with neural predictors of message effectiveness. Neural activity in a medial prefrontal region of interest, previously associated with individual behavior change, predicted the population response, whereas self-report judgments did not. This finding suggests a novel way of connecting neural signals to population responses that has not been previously demonstrated and provides information that may be difficult to obtain otherwise
    • …
    corecore