9,129 research outputs found
Modulator for tone and binary signals
Tones and binary information are transmitted as phase variations on a carrier wave of constant amplitude and frequency. The carrier and tones are applied to a balanced modulator for deriving an output signal including a pair of sidebands relative to the carrier. The carrier is phase modulated by a digital signal so that it is + or - 90 deg out of phase with the predetermined phase of the carrier. The carrier is combined in an algebraic summing device with the phase modulated signal and the balanced modulator output signal. The output of the algebraic summing device is hard limited to derive a constant amplitude and frequency signal having very narrow bandwidth requirements. At a receiver, the tones and binary data are detected with a phase locked loop having a voltage controlled oscillator driving a pair of orthogonal detection channels
Use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia
A technique for measuring smoke plume of large industrial sources observed by satellite using LARSYS is proposed. A Gaussian plume model is described, integrated in the vertical, and inverted to yield a form for the lateral diffusion coefficient, Ky. Given u, wind speed; y sub l, the horizontal distance of a line of constant brightness from the plume symmetry axis a distance x sub l, downstream from reference point at x=x sub 2, y=0, then K sub y = u ((y sub 1) to the 2nd power)/2 x sub 1 1n (x sub 2/x sub 1). The technique is applied to a plume from a power plant at Chester, Virginia, imaged August 31, 1973 by LANDSAT I. The plume bends slightly to the left 4.3 km from the source and estimates yield Ky of 28 sq m/sec near the source, and 19 sq m/sec beyond the bend. Maximum ground concentrations are estimated between 32 and 64 ug/cu m. Existing meteorological data would not explain such concentrations
Theory of non-equilibrium electronic Mach-Zehnder interferometer
We develop a theoretical description of interaction-induced phenomena in an
electronic Mach-Zehnder interferometer formed by integer quantum Hall edge
states (with \nu =1 and 2 channels) out of equilibrium. Using the
non-equilibrium functional bosonization framework, we derive an effective
action which contains all the physics of the problem. We apply the theory to
the model of a short-range interaction and to a more realistic case of
long-range Coulomb interaction. The theory takes into account
interaction-induced effects of dispersion of plasmons, charging, and
decoherence. In the case of long-range interaction we find a good agreement
between our theoretical results for the visibility of Aharonov-Bohm
oscillations and experimental data.Comment: 19 pages, 10 figure
The complex molecular absorption line system at z=0.886 towards PKS1830-211
New millimeter wave observations of the molecular absorption line system in
the gravitational lens to PKS1830-211 at z=0.88582 is presented.
Self-calibrated interferometer data shows unequivocally that the previously
detected absorption component is associated with the gravitationally lensed
south-west image of the background source. A second absorption line of
HCO+(2-1) at z=0.88582 is detected. This component is shifted in velocity by
-147 km/s relative to the main absorption line, and is shown to be associated
with the north-east image. These two absorption lines are used to constrain the
mass of the lensing galaxy. Upper limits to absorption and emission lines from
the possible absorption system at z=0.1927, seen in 21cm HI by Lovell et al,
are reported.Comment: 16 pages, 7 figures, Accepted for publication in Ap
Clinical profile of vigabatrin as monotherapy for treatment of infantile spasms
Jason T Lerner1, Noriko Salamon2, Raman Sankar1,31Departments of Pediatrics, 2Radiological Sciences, 3Neurology, David Geffen School of Medicine, University of California Los Angeles and Mattel Children’s Hospital at UCLA, Los Angeles, CA, USAAbstract: Vigabatrin, the first therapeutic agent to be approved by the Food and Drug Administration for the treatment of infantile spasms, as well as for adjunctive use in the treatment of refractory complex partial epilepsy, represents an important advance for patients with difficult-to-manage epilepsy. This review summarizes the complex history, chemistry, and pharmacology, as well as the clinical data leading to the approval of vigabatrin for infantile spasms in the US. The long path to its approval reflects the visual system and white matter toxicity concerns with this agent. This review provides a brief description of these concerns, and the regulatory safety monitoring and mitigation systems that have been put in place to enhance benefit over risk.Keywords: vigabatrin, infantile spasms, monotherap
Cosine and Sine Operators Related with Orthogonal Polynomial Sets on the Intervall [-1,1]
The quantization of phase is still an open problem. In the approach of
Susskind and Glogower so called cosine and sine operators play a fundamental
role. Their eigenstates in the Fock representation are related with the
Chebyshev polynomials of the second kind. Here we introduce more general cosine
and sine operators whose eigenfunctions in the Fock basis are related in a
similar way with arbitrary orthogonal polynomial sets on the intervall [-1,1].
To each polynomial set defined in terms of a weight function there corresponds
a pair of cosine and sine operators. Depending on the symmetry of the weight
function we distinguish generalized or extended operators. Their eigenstates
are used to define cosine and sine representations and probability
distributions. We consider also the inverse arccosine and arcsine operators and
use their eigenstates to define cosine-phase and sine-phase distributions,
respectively. Specific, numerical and graphical results are given for the
classical orthogonal polynomials and for particular Fock and coherent states.Comment: 1 tex-file (24 pages), 11 figure
Nonequilibrium kinetics of a disordered Luttinger liquid
We develop a kinetic theory for strongly correlated disordered
one-dimensional electron systems out of equilibrium, within the Luttinger
liquid model. In the absence of inhomogeneities, the model exhibits no
relaxation to equilibrium. We derive kinetic equations for electron and plasmon
distribution functions in the presence of impurities and calculate the
equilibration rate . Remarkably, for not too low temperature and bias
voltage, is given by the elastic backscattering rate, independent of
the strength of electron-electron interaction, temperature, and bias.Comment: 4 pages, 3 figures, revised versio
- …