49 research outputs found
Non-destructive imaging of an individual protein
The mode of action of proteins is to a large extent given by their ability to
adopt different conformations. This is why imaging single biomolecules at
atomic resolution is one of the ultimate goals of biophysics and structural
biology. The existing protein database has emerged from X-ray crystallography,
NMR or cryo-TEM investigations. However, these tools all require averaging over
a large number of proteins and thus over different conformations. This of
course results in the loss of structural information. Likewise it has been
shown that even the emergent X-FEL technique will not get away without
averaging over a large quantity of molecules. Here we report the first
recordings of a protein at sub-nanometer resolution obtained from one
individual ferritin by means of low-energy electron holography. One single
protein could be imaged for an extended period of time without any sign of
radiation damage. Since ferritin exhibits an iron core, the holographic
reconstructions could also be cross-validated against TEM images of the very
same molecule by imaging the iron cluster inside the molecule while the protein
shell is decomposed
Fourier Transform Holography: A Lensless Non-Destructive Imaging Technique
Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 - August 2, 201
Solution to the twin image problem in holography
While the invention of holography by Dennis Gabor truly constitutes an
ingenious concept, it has ever since been troubled by the so called twin image
problem limiting the information that can be obtained from a holographic
record. Due to symmetry reasons there are always two images appearing in the
reconstruction process. Thus, the reconstructed object is obscured by its
unwanted out of focus twin image. Especially for emission electron as well as
for x- and gamma-ray holography, where the source-object distances are small,
the reconstructed images of atoms are very close to their twin images from
which they can hardly be distinguished. In some particular instances only,
experimental efforts could remove the twin images. More recently, numerical
methods to diminish the effect of the twin image have been proposed but are
limited to purely absorbing objects failing to account for phase shifts caused
by the object. Here we show a universal method to reconstruct a hologram
completely free of twin images disturbance while no assumptions about the
object need to be imposed. Both, amplitude and true phase distributions are
retrieved without distortion
Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy
We demonstrate the application of graphene as a support for imaging
individual biological molecules in transmission electron microscope (TEM). A
simple procedure to produce free-standing graphene membranes has been designed.
Such membranes are extremely robust and can support practically any
sub-micrometer object. Tobacco mosaic virus has been deposited on graphene
samples and observed in a TEM. High contrast has been achieved even though no
staining has been applied
Nondestructive imaging of individual biomolecules
Radiation damage is considered to be the major problem that still prevents imaging an individual biological molecule for structural analysis. So far, all known mapping techniques using sufficient short wavelength radiation, be it x rays or high energy electrons, circumvent this problem by averaging over many molecules. Averaging, however, leaves conformational details uncovered. Even the anticipated use of ultrashort but extremely bright x-ray bursts of a free electron laser shall afford averaging over 106 molecules to arrive at atomic resolution. Here, we present direct experimental evidence for nondestructive imaging of individual DNA molecules. In fact, we show that DNA withstands coherent low energy electron radiation with deBroglie wavelength in the Ångstrom regime despite a vast dose of 108 electrons/nm2 accumulated over more than one hour
HOLOGRAPHIC CONVERGENT ELECTRON BEAM DIFFRACTION (CBED) IMAGING of TWO-DIMENSIONAL CRYSTALS
10.1142/s0218625x21400011Surface Review and Letters288214000