1,163 research outputs found
Engineering adiabaticity at an avoided crossing with optimal control
We investigate ways to optimize adiabaticity and diabaticity in the
Landau-Zener model with non-uniform sweeps. We show how diabaticity can be
engineered with a pulse consisting of a linear sweep augmented by an
oscillating term. We show that the oscillation leads to jumps in populations
whose value can be accurately modeled using a model of multiple,
photon-assisted Landau-Zener transitions, which generalizes work by Wubs et al.
[New J. Phys. 7, 218 (2005)]. We extend the study on diabaticity using methods
derived from optimal control. We also show how to preserve adiabaticity with
optimal pulses at limited time, finding a non-uniform quantum speed limit
Molecular mode-coupling theory for supercooled liquids: Application to water
We present mode-coupling equations for the description of the slow dynamics
observed in supercooled molecular liquids close to the glass transition. The
mode-coupling theory (MCT) originally formulated to study the slow relaxation
in simple atomic liquids, and then extended to the analysis of liquids composed
by linear molecules, is here generalized to systems of arbitrarily shaped,
rigid molecules. We compare the predictions of the theory for the -vector
dependence of the molecular nonergodicity parameters, calculated by solving
numerically the molecular MCT equations in two different approximation schemes,
with ``exact'' results calculated from a molecular dynamics simulation of
supercooled water. The agreement between theory and simulation data supports
the view that MCT succeeds in describing the dynamics of supercooled molecular
liquids, even for network forming ones.Comment: 22 pages 4 figures Late
Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems
A general electrodynamic theory of a grating coupled two dimensional electron
system (2DES) is developed. The 2DES is treated quantum mechanically, the
grating is considered as a periodic system of thin metal strips or as an array
of quantum wires, and the interaction of collective (plasma) excitations in the
system with electromagnetic field is treated within the classical
electrodynamics. It is assumed that a dc current flows in the 2DES. We consider
a propagation of an electromagnetic wave through the structure, and obtain
analytic dependencies of the transmission, reflection, absorption and emission
coefficients on the frequency of light, drift velocity of 2D electrons, and
other physical and geometrical parameters of the system. If the drift velocity
of 2D electrons exceeds a threshold value, a current-driven plasma instability
is developed in the system, and an incident far infrared radiation is
amplified. We show that in the structure with a quantum wire grating the
threshold velocity of the amplification can be essentially reduced, as compared
to the commonly employed metal grating, down to experimentally achievable
values. Physically this is due to a considerable enhancement of the grating
coupler efficiency because of the resonant interaction of plasma modes in the
2DES and in the grating. We show that tunable far infrared emitters, amplifiers
and generators can thus be created at realistic parameters of modern
semiconductor heterostructures.Comment: 28 pages, 15 figures, submitted to Phys. Rev.
A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid
Generalizing the mode-coupling theory for ideal liquid-glass transitions,
equations of motion are derived for the correlation functions describing the
glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming
system. The molecule is described in the interaction-site representation and
the equations are solved for a dumbbell molecule consisting of two fused hard
spheres in a hard-sphere system. The results for the molecule's arrested
position in the glass state and the reorientational correlators for
angular-momentum index and near the glass transition are
compared with those obtained previously within a theory based on a
tensor-density description of the molecule in order to demonstrate that the two
approaches yield equivalent results. For strongly hindered reorientational
motion, the dipole-relaxation spectra for the -process can be mapped on
the dielectric-loss spectra of glycerol if a rescaling is performed according
to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is
demonstrated that the glassy dynamics is independent of the molecule's inertia
parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin
The Debye-Waller factor of liquid silica: Theory and simulation
We show that the prediction of mode-coupling theory for a model of a
network-forming strong glass-former correctly describes the wave-vector
dependence of the Debye-Waller factor. To obtain a good description it is
important to take into account the triplet correlation function c_3, which we
evaluate from a computer simulation. Our results support the possibility that
this theory is able to accurately describe the non-ergodicity parameters of
simple as well as of network-forming liquids.Comment: 5 pages of Latex, 3 figure
Magnetohydrodynamics of Cloud Collisions in a Multi-phase Interstellar Medium
We extend previous studies of the physics of interstellar cloud collisions by
beginning investigation of the role of magnetic fields through 2D
magnetohydrodynamic (MHD) numerical simulations. We study head-on collisions
between equal mass, mildly supersonic diffuse clouds. We include a moderate
magnetic field and two limiting field geometries, with the field lines parallel
(aligned) and perpendicular (transverse) to the colliding cloud motion. We
explore both adiabatic and radiative cases, as well as symmetric and asymmetric
ones. We also compute collisions between clouds evolved through prior motion in
the intercloud medium and compare with unevolved cases.
We find that: In the (i) aligned case, adiabatic collisions, like their HD
counterparts, are very disruptive, independent of the cloud symmetry. However,
when radiative processes are taken into account, partial coalescence takes
place even in the asymmetric case, unlike the HD calculations. In the (ii)
transverse case, collisions between initially adjacent unevolved clouds are
almost unaffected by magnetic fields. However, the interaction with the
magnetized intercloud gas during the pre-collision evolution produces a region
of very high magnetic energy in front of the cloud. In collisions between
evolved clouds with transverse field geometry, this region acts like a
``bumper'', preventing direct contact between the clouds, and eventually
reverses their motion. The ``elasticity'', defined as the ratio of the final to
the initial kinetic energy of each cloud, is about 0.5-0.6 in the cases we
considered. This behavior is found both in adiabatic and radiative cases.Comment: 40 pages in AAS LaTeX v4.0, 13 figures (in degraded jpeg format).
Full resolution images as well as mpeg animations are available at
http://www.msi.umn.edu:80/Projects/twj/mhd-cc/ . Accepted for publication in
The Astrophysical Journa
Test of the semischematic model for a liquid of linear molecules
We apply to a liquid of linear molecules the semischematic mode-coupling
model, previously introduced to describe the center of mass (COM) slow dynamics
of a network-forming molecular liquid. We compare the theoretical predictions
and numerical results from a molecular dynamics simulation, both for the time
and the wave-vector dependence of the COM density-density correlation function.
We discuss the relationship between the presented analysis and the results from
an approximate solution of the equations from molecular mode-coupling theory
[R. Schilling and T. Scheidsteger, Phys. Rev. E 56 2932 (1997)].Comment: Revtex, 10 pages, 4 figure
Influence of retardation effects on 2D magnetoplasmon spectrum
Within dissipationless limit the magnetic field dependence of magnetoplasmon
spectrum for unbounded 2DEG system found to intersect the cyclotron resonance
line, and, then approaches the frequency given by light dispersion relation.
Recent experiments done for macroscopic disc-shape 2DEG systems confirm theory
expectations.Comment: 2 pages,2 figure
Radial orbit instability: review and perspectives
This paper presents elements about the radial orbit instability, which occurs
in spherical self-gravitating systems with a strong anisotropy in the radial
velocity direction. It contains an overview on the history of radial orbit
instability. We also present the symplectic method we use to explore stability
of equilibrium states, directly related to the dissipation induced instability
mechanism well known in theoretical mechanics and plasma physics.Comment: 10 pages, submitted to Transport Theory and Statistical Physics,
proceedings of Vlasovia 2009 International Conference. Corrected for typos,
redaction, and references adde
- âŠ