15,103 research outputs found

    U(1)' solution to the mu-problem and the proton decay problem in supersymmetry without R-parity

    Full text link
    The Minimal Supersymmetric Standard Model (MSSM) is plagued by two major fine-tuning problems: the mu-problem and the proton decay problem. We present a simultaneous solution to both problems within the framework of a U(1)'-extended MSSM (UMSSM), without requiring R-parity conservation. We identify several classes of phenomenologically viable models and provide specific examples of U(1)' charge assignments. Our models generically contain either lepton number violating or baryon number violating renormalizable interactions, whose coexistence is nevertheless automatically forbidden by the new U(1)' gauge symmetry. The U(1)' symmetry also prohibits the potentially dangerous and often ignored higher-dimensional proton decay operators such as QQQL and UUDE which are still allowed by R-parity. Thus, under minimal assumptions, we show that once the mu-problem is solved, the proton is sufficiently stable, even in the presence of a minimum set of exotics fields, as required for anomaly cancellation. Our models provide impetus for pursuing the collider phenomenology of R-parity violation within the UMSSM framework.Comment: Version published in Phys. Rev.

    Lanczos exact diagonalization study of field-induced phase transition for Ising and Heisenberg antiferromagnets

    Full text link
    Using an exact diagonalization treatment of Ising and Heisenberg model Hamiltonians, we study field-induced phase transition for two-dimensional antiferromagnets. For the system of Ising antiferromagnet the predicted field-induced phase transition is of first order, while for the system of Heisenberg antiferromagnet it is the second-order transition. We find from the exact diagonalization calculations that the second-order phase transition (metamagnetism) occurs through a spin-flop process as an intermediate step.Comment: 4 pages, 4 figure

    UBVI Surface Photometry of the Spiral Galaxy NGC 300 in the Sculptor Group

    Full text link
    We present UBVI surface photometry for 20.'5 X 20.'5 area of a late-type spiral galaxy NGC 300. In order to understand the morphological properties and luminosity distribution characteristics of NGC 300, we have derived isophotal maps, surface brightness profiles, ellipticity profiles, position angle profiles, and color profiles. By merging the I-band data of our surface brightness measurements with those of Boeker et al. (2002) based on Hubble Space Telescope observations, we have made combined I-band surface brightness profiles for the region of 0."02 < r < 500" and decomposed the profiles into three components: a nucleus, a bulge, and an exponential disk.Comment: 16 pages(cjaa209.sty), Accepted by the Chinese J. Astron. Astrophys., Fig 2 and 8 are degraded to reduce spac

    Fragmented and Single Condensate Ground States of Spin-1 Bose Gas

    Full text link
    We show that the ground state of a spin-1 Bose gas with an antiferro- magnetic interaction is a fragmented condensate in uniform magnetic fields. The number fluctuations in each spin component change rapidly from being enormous (order NN) to exceedingly small (order 1) as the magnetization of the system increases. A fragmented condensate can be turned into a single condensate state by magnetic field gradients. The conditions for existence and the method of detecting fragmented states are presented.Comment: 4 pages, no figure

    Spectroscopic Evidence for Anisotropic S-Wave Pairing Symmetry in MgB2

    Get PDF
    Scanning tunneling spectroscopy of superconducting MgB2_2 (Tc=39T_c = 39 K) were studied on high-density pellets and c-axis oriented films. The sample surfaces were chemically etched to remove surface carbonates and hydroxides, and the data were compared with calculated spectra for all symmetry-allowed pairing channels. The pairing potential (Δk\Delta_k) is best described by an anisotropic s-wave pairing model, with Δk=Δxysin⁥2Ξk+Δzcos⁥2Ξk\Delta_k = \Delta_{xy} \sin ^2 \theta_k + \Delta_z \cos ^2 \theta_k, where Ξk\theta_k is the angle relative to the crystalline c-axis, Δz∌8.0\Delta_z \sim 8.0 meV, and Δxy∌5.0\Delta_{xy} \sim 5.0 meV.Comment: 4 pages and 3 figures. Submitted to Physical Review Letters. Corresponding author: Nai-Chang Yeh (e-mail: [email protected]

    Determination of Anaerobic Threshold by Heart Rate or Heart Rate Variability using Discontinuous Cycle Ergometry

    Get PDF
    International Journal of Exercise Science 7(1) : 45-53, 2014. The purpose was to determine if heart rate (HR) and heart rate variability (HRV) responses would reflect anaerobic threshold (AT) using a discontinuous, incremental, cycle test. AT was determined by ventilatory threshold (VT). Cyclists (30.6±5.9y; 7 males, 8 females) completed a discontinuous cycle test consisting of 7 stages (6 min each with 3 min of rest between). Three stages were performed at power outputs (W) below those corresponding to a previously established AT, one at W corresponding to AT, and 3 at W above those corresponding to AT. The W at the intersection of the trend lines was considered each metric’s “threshold”. The averaged stage data for Ve, HR, and time- and frequency-domain HRV metrics were plotted versus W. The W at the “threshold” for the metrics of interest were compared using correlation analysis and paired-sample t-test. In all, several heart rate-related parameters accurately reflected AT with significant correlations (p≀0.05) were observed between AT W and HR, mean RR interval (MRR), low and high frequency spectral energy (LF and HR, respectively), high frequency peak (fHF), and HFxfHF metrics’ threshold W (i.e., MRRTW, etc.). Differences in HR or HRV metric threshold W and AT for all subjects were less than 14 W. The steady state data from discontinuous protocols may allow for a true indication of steady-state physiologic stress responses and corresponding W at AT, compared to continuous protocols using 1-2 min exercise stages

    Relative fluorine concentrations in radio frequency/electron cyclotron resonance hybrid glow discharges

    Full text link
    The relative concentration of atomic fluorine was measured in a radio frequency (rf) glow discharge and a modified electron cyclotron resonance microwave/rf hybrid discharge in CF4 using an actinometric technique. The dependence of fluorine concentration on rf and microwave power, pressure, flow, and excitation source are presented. Anomalous behavior with rf power at constant microwave power was observed when using the Ar 750‐nm line as the actinometric species.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70900/2/APPLAB-60-7-818-1.pd

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    Actor-Critic Sequence Training for Image Captioning.

    Get PDF
    Generating natural language descriptions of images is an important capability for a robot or other visual-intelligence driven AI agent that may need to communicate with human users about what it is seeing. Such image captioning methods are typically trained by maximising the likelihood of ground-truth annotated caption given the image. While simple and easy to implement, this approach does not directly maximise the language quality metrics we care about such as CIDEr. In this paper we investigate training image captioning methods based on actor-critic reinforcement learning in order to directly optimise non-differentiable quality metrics of interest. By formulating a per-token advantage and value computation strategy in this novel reinforcement learning based captioning model, we show that it is possible to achieve the state of the art performance on the widely used MSCOCO benchmark

    Bimetallic non-alloyed NPs for improving the broadband optical absorption of thin amorphous silicon substrates

    Get PDF
    We propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film\u27s average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance. Experimental results show that Au-Ag BNNPs fabricated on a glass substrate exhibit resonant peaks at 437 and 540 nm and a 14-fold increase in average forward scattering over the wavelength range of 300 to 1,100 nm in comparison with bare glass. When deposited on a 100-nmthin a-Si film, Au-Ag BNNPs increase the average absorption and forward scattering by 19.6% and 95.9% compared to those values for Au NPs on thin a-Si and plain a-Si without MNPs, respectively, over the 300- to 1,100-nm range
    • 

    corecore