18 research outputs found
Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code
A fundamental requirement for enabling fault-tolerant quantum information
processing is an efficient quantum error-correcting code (QECC) that robustly
protects the involved fragile quantum states from their environment. Just as
classical error-correcting codes are indispensible in today's information
technologies, it is believed that QECC will play a similarly crucial role in
tomorrow's quantum information systems. Here, we report on the first
experimental demonstration of a quantum erasure-correcting code that overcomes
the devastating effect of photon losses. Whereas {\it errors} translate, in an
information theoretic language, the noise affecting a transmission line, {\it
erasures} correspond to the in-line probabilistic loss of photons. Our quantum
code protects a four-mode entangled mesoscopic state of light against erasures,
and its associated encoding and decoding operations only require linear optics
and Gaussian resources. Since in-line attenuation is generally the strongest
limitation to quantum communication, much more than noise, such an
erasure-correcting code provides a new tool for establishing quantum optical
coherence over longer distances. We investigate two approaches for
circumventing in-line losses using this code, and demonstrate that both
approaches exhibit transmission fidelities beyond what is possible by classical
means.Comment: 5 pages, 4 figure
Isolation and Characterisation of a Human-Like Antibody Fragment (scFv) That Inactivates VEEV In Vitro and In Vivo
Venezuelan equine encephalitis virus (VEEV) belongs to the Alphavirus genus and several species of this family are pathogenic to humans. The viruses are classified as potential agents of biological warfare and terrorism and sensitive detection as well as effective prophylaxis and antiviral therapies are required