1,358 research outputs found

    Production Mechanism for Quark Gluon Plasma in Heavy Ion Collisions

    Get PDF
    A general scheme is proposed here to describe the production of semi soft and soft quarks and gluons that form the bulk of the plasma in ultra relativistic heavy ion collisions. We show how to obtain rates as a function of time in a self consistent manner, without any ad-hoc assumption. All the required features - the dynamical nature of QCD vacuum, the non-Markovian nature of the production, and quasi particle nature of the partons, and the importance of quantum interference effects are naturally incorporated. We illustrate the results with a realistic albeit toy model and show how almost all the currently employed source terms are unreliable in their predictions. We show the rates in the momentum space and indicate at the end how to extract the full phase-space dependence.Comment: 4 pages, 4 figures, two colum

    Theory of shot noise in space-charge limited diffusive conduction regime

    Full text link
    As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.Comment: 17 pages, no figure

    Charge injection instability in perfect insulators

    Full text link
    We show that in a macroscopic perfect insulator, charge injection at a field-enhancing defect is associated with an instability of the insulating state or with bistability of the insulating and the charged state. The effect of a nonlinear carrier mobility is emphasized. The formation of the charged state is governed by two different processes with clearly separated time scales. First, due to a fast growth of a charge-injection mode, a localized charge cloud forms near the injecting defect (or contact). Charge injection stops when the field enhancement is screened below criticality. Secondly, the charge slowly redistributes in the bulk. The linear instability mechanism and the final charged steady state are discussed for a simple model and for cylindrical and spherical geometries. The theory explains an experimentally observed increase of the critical electric field with decreasing size of the injecting contact. Numerical results are presented for dc and ac biased insulators.Comment: Revtex, 7pages, 4 ps figure

    Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study

    Get PDF
    Form resistance (Phi) is a dimensionless number expressing how much slower or faster a particle of any form sinks in a fluid medium than the sphere of equivalent volume. Form resistance factors of PVC models of phytoplankton sinking in glycerin were measured in a large aquarium (0.6 x 0.6 x 0.95 m). For cylindrical forms, a positive relationship was found between Phi and length/ width ratio. Coiling decreased Phi in filamentous forms. Form resistance of Asterionella colonies increased from single cells up to 6-celled colonies than remained nearly constant. For Fragilaria crotonensis chains, no such upper limit to Phi was observed in chains of up to 20 cells ( longer ones were not measured). The effect of symmetry on Phi was tested in 1 - 6-celled Asterionella colonies, having variable angles between the cells, and in Tetrastrum staurogeniaeforme coenobia, having different spine arrangements. In all cases, symmetric forms had considerably higher form resistance than asymmetric ones. However, for Pediastrum coenobia with symmetric/asymmetric fenestration, no difference was observed with respect to symmetry. Increasing number and length of spines on Tetrastrum coenobia substantially increased Phi. For a series of Staurastrum forms, a significant positive correlation was found between arm-length/cell-width ratio and Phi: protuberances increased form resistance. Flagellates (Rhodomonas, Gymnodinium) had a Phi 1. The highest value ( Phi = 8.1) was established for a 20-celled Fragilaria crotonensis chain. Possible origin of the so-called 'vital component' ( a factor that shows how much slower viable populations sink than morphologically similar senescent or dead ones) is discussed, as is the role of form resistance in evolution of high diversity of plankton morphologies

    Near-field spectroscopy of a gated electron gas: a direct evidence for electrons localization

    Full text link
    The near-field photoluminescence of a gated two-dimensional electron gas is measured. We use the negatively charged exciton, formed by binding of an electron to a photo-excited electron-hole pair, as an indicator for the local presence of charge. Large spatial fluctuations in the luminescence intensity of the negatively charged exciton are observed. These fluctuations are shown to be due to electrons localized in the random potential of the remote ionized donors. We use these fluctuations to image the electrons and donors distribution in the plane.Comment: 10 pages, 5 figures, to be published in PR

    Invertible Zero-Shot Recognition Flows

    Get PDF
    © 2020, Springer Nature Switzerland AG. Deep generative models have been successfully applied to Zero-Shot Learning (ZSL) recently. However, the underlying drawbacks of GANs and VAEs (e.g., the hardness of training with ZSL-oriented regularizers and the limited generation quality) hinder the existing generative ZSL models from fully bypassing the seen-unseen bias. To tackle the above limitations, for the first time, this work incorporates a new family of generative models (i.e., flow-based models) into ZSL. The proposed Invertible Zero-shot Flow (IZF) learns factorized data embeddings (i.e., the semantic factors and the non-semantic ones) with the forward pass of an invertible flow network, while the reverse pass generates data samples. This procedure theoretically extends conventional generative flows to a factorized conditional scheme. To explicitly solve the bias problem, our model enlarges the seen-unseen distributional discrepancy based on a negative sample-based distance measurement. Notably, IZF works flexibly with either a naive Bayesian classifier or a held-out trainable one for zero-shot recognition. Experiments on widely-adopted ZSL benchmarks demonstrate the significant performance gain of IZF over existing methods, in both classic and generalized settings

    Going beyond defining: Preschool educators\u27 use of knowledge in their pedagogical reasoning about vocabulary instruction

    Get PDF
    Previous research investigating both the knowledge of early childhood educators and the support for vocabulary development present in early childhood settings has indicated that both educator knowledge and enacted practice are less than optimal, which has grave implications for children\u27s early vocabulary learning and later reading achievement. Further, the nature of the relationship between educators\u27 knowledge and practice is unclear, making it difficult to discern the best path towards improved knowledge, practice, and children\u27s vocabulary outcomes. The purpose of the present study was to add to the existing literature by using stimulated recall interviews and a grounded approach to examine how 10 preschool educators used their knowledge to made decisions about their moment-to-moment instruction in support of children\u27s vocabulary development. Results indicate that educators were thinking in highly context-specific ways about their goals and strategies for supporting vocabulary learning, taking into account important knowledge of their instructional history with children and of the children themselves to inform their decision making in the moment. In addition, they reported thinking about research-based goals and strategies for supporting vocabulary learning that went beyond simply defining words for children. Implications for research and professional development are discussed

    Larger Domains from Resonant Decay of Disoriented Chiral Condensates

    Full text link
    The decay of disoriented chiral condensates into soft pions is considered within the context of a linear sigma model. Unlike earlier analytic studies, which focused on the production of pions as the sigma field rolled down toward its new equilibrium value, here we focus on the amplification of long-wavelength pion modes due to parametric resonance as the sigma field oscillates around the minimum of its potential. This process can create larger domains of pion fluctuations than the usual spinodal decomposition process, and hence may provide a viable experimental signature for chiral symmetry breaking in relativistic heavy ion collisions; it may also better explain physically the large growth of domains found in several numerical simulations.Comment: 4pp, 2 figs, Revtex. Minor revisions, conclusions unchange

    Coherent amplification of classical pion fields during the cooling of droplets of quark plasma

    Full text link
    In the framework of the linear sigma model, we study the time evolution of a system of classical σ\sigma and pion fields coupled to quarks. For this purpose we solve numerically the classical transport equation for relativistic quarks coupled to the nonlinear Klein-Gordon equations for the meson fields. We examine evolution starting from variety of initial conditions corresponding to spherical droplets of hot quark matter, which might mimic the behaviour of a quark plasma produced in high-energy nucleus-nucleus collisions. For large droplets we find a strong amplification of the pion field that oscillates in time. This leads to a coherent production of pions with a particular isospin and so would have similar observable effects to a disoriented chiral condensate which various authors have suggested might be a signal of the chiral phase transition. The mechanism for amplification of the pion field found here does not rely on this phase transition and is better thought of as a "pion laser" which is driven by large oscillations of the σ\sigma field.Comment: 12 TeX pages + 20 postscript figures, psfig styl
    • …
    corecore