35,971 research outputs found

    General one-loop formulas for decay hZγh\rightarrow Z\gamma

    Full text link
    Radiative corrections to the hZγh\rightarrow Z\gamma are evaluated in the one-loop approximation. The unitary gauge gauge is used. The analytic result is expressed in terms of the Passarino-Veltman functions. The calculations are applicable for the Standard Model as well for a wide class of its gauge extensions. In particular, the decay width of a charged Higgs boson H±W±γH^\pm \rightarrow W^\pm\gamma can be derived. The consistence of our formulas and several specific earlier results is shown.Comment: 33 pages, 3 figures, a new section (V) and references were improved in the published versio

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 2: User's manual and program listing

    Get PDF
    An efficient computer program, called GRID2D/3D, was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. The theory and method used in GRID2D/3D is described

    GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    Get PDF
    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no modifications are needed in the grid generation part of the program. This technical memorandum describes the theory and method used in GRID2D/3D

    One-loop contributions to decays ebeaγe_b\to e_a \gamma and (g2)ea(g-2)_{e_a} anomalies, and Ward identity

    Full text link
    In this paper, we will present analytic formulas to express one-loop contributions to lepton flavor violating decays ebeaγe_b\to e_a \gamma, which are also relevant to the anomalous dipole magnetic moments of charged leptons eae_a. These formulas were computed in the unitary gauge, using the well-known Passarino-Veltman notations. We also show that our results are consistent with those calculated previously in the 't Hooft-Veltman gauge, or in the limit of zero lepton masses. At the one-loop level, we show that the appearance of fermion-scalar-vector type diagrams in the unitary gauge will violate the Ward Identity relating to an external photon. As a result, the validation of the Ward Identity guarantees that the photon always couples with two identical particles in an arbitrary triple coupling vertex containing a photon.Comment: The version accepted to Nuclear Physics

    Benchmark generator for CEC 2009 competition on dynamic optimization

    Get PDF
    Evolutionary algorithms(EAs) have been widely applied to solve stationary optimization problems. However, many real-world applications are actually dynamic. In order to study the performance of EAs in dynamic environments, one important task is to develop proper dynamic benchmark problems. Over the years, researchers have applied a number of dynamic test problems to compare the performance of EAs in dynamic environments, e.g., the “moving peaks ” benchmark (MPB) proposed by Branke [1], the DF1 generator introduced by Morrison and De Jong [6], the singleand multi-objective dynamic test problem generator by dynamically combining different objective functions of exiting stationary multi-objective benchmark problems suggested by Jin and Sendhoff [2], Yang and Yao’s exclusive-or (XOR) operator [10, 11, 12], Kang’s dynamic traveling salesman problem (DTSP) [3] and dynamic multi knapsack problem (DKP), etc. Though a number of DOP generators exist in the literature, there is no unified approach of constructing dynamic problems across the binary space, real space and combinatorial space so far. This report uses the generalized dynamic benchmark generator (GDBG) proposed in [4], which construct dynamic environments for all the three solution spaces. Especially, in the rea

    Prototype Backscatter Moessbauer Spectrometer for Measurement of Martian Surface Mineralogy

    Get PDF
    We have designed and successfully tested a prototype of a backscatter Moessbauer spectrometer (BaMS) targeted for use on the Martian surface to (1) determine oxidation states of iron, and (2) identify and determine relative abundances of iron-bearing mineralogies. No sample preparation is required to perform measurements; it is only necessary to bring sample and instrument into physical contact. The prototype meets our projected specification for a flight instrument in terms of mass, power, and volume. A Moessbauer spectrometer on the Martian surface would provide wide variety of information about the current state of the Martian surface, and this information is described
    corecore